Hierarchical Context Pruning: Optimizing Real-World Code Completion with Repository-Level Pretrained Code LLMs
- URL: http://arxiv.org/abs/2406.18294v2
- Date: Thu, 27 Jun 2024 04:40:52 GMT
- Title: Hierarchical Context Pruning: Optimizing Real-World Code Completion with Repository-Level Pretrained Code LLMs
- Authors: Lei Zhang, Yunshui Li, Jiaming Li, Xiaobo Xia, Jiaxi Yang, Run Luo, Minzheng Wang, Longze Chen, Junhao Liu, Min Yang,
- Abstract summary: We propose a strategy named Hierarchical Context Pruning (HCP) to construct completion prompts with high informational code content.
The HCP models the code repository at the function level, maintaining the topological dependencies between code files while removing a large amount of irrelevant code content.
- Score: 24.00351065427465
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Some recently developed code large language models (Code LLMs) have been pre-trained on repository-level code data (Repo-Code LLMs), enabling these models to recognize repository structures and utilize cross-file information for code completion. However, in real-world development scenarios, simply concatenating the entire code repository often exceeds the context window limits of these Repo-Code LLMs, leading to significant performance degradation. In this study, we conducted extensive preliminary experiments and analyses on six Repo-Code LLMs. The results indicate that maintaining the topological dependencies of files and increasing the code file content in the completion prompts can improve completion accuracy; pruning the specific implementations of functions in all dependent files does not significantly reduce the accuracy of completions. Based on these findings, we proposed a strategy named Hierarchical Context Pruning (HCP) to construct completion prompts with high informational code content. The HCP models the code repository at the function level, maintaining the topological dependencies between code files while removing a large amount of irrelevant code content, significantly reduces the input length for repository-level code completion. We applied the HCP strategy in experiments with six Repo-Code LLMs, and the results demonstrate that our proposed method can significantly enhance completion accuracy while substantially reducing the length of input. Our code and data are available at https://github.com/Hambaobao/HCP-Coder.
Related papers
- OpenCoder: The Open Cookbook for Top-Tier Code Large Language Models [70.72097493954067]
Large language models (LLMs) for code have become indispensable in various domains, including code generation, reasoning tasks and agent systems.
While open-access code LLMs are increasingly approaching the performance levels of proprietary models, high-quality code LLMs remain limited.
We introduce OpenCoder, a top-tier code LLM that not only achieves performance comparable to leading models but also serves as an "open cookbook" for the research community.
arXiv Detail & Related papers (2024-11-07T17:47:25Z) - Codev-Bench: How Do LLMs Understand Developer-Centric Code Completion? [60.84912551069379]
We present the Code-Development Benchmark (Codev-Bench), a fine-grained, real-world, repository-level, and developer-centric evaluation framework.
Codev-Agent is an agent-based system that automates repository crawling, constructs execution environments, extracts dynamic calling chains from existing unit tests, and generates new test samples to avoid data leakage.
arXiv Detail & Related papers (2024-10-02T09:11:10Z) - On the Impacts of Contexts on Repository-Level Code Generation [5.641402231731082]
We present textbfmethodnamews, a novel benchmark designed to evaluate repository-level code generation.
We focus on three key aspects: executability, functional correctness through comprehensive test case generation, and accurate utilization of cross-file contexts.
arXiv Detail & Related papers (2024-06-17T10:45:22Z) - GraphCoder: Enhancing Repository-Level Code Completion via Code Context Graph-based Retrieval and Language Model [30.625128161499195]
GraphCoder is a retrieval-augmented code completion framework.
It uses general code knowledge and the repository-specific knowledge via a graph-based retrieval-generation process.
It achieves higher exact match (EM) on average, with increases of +6.06 in code match and +6.23 in identifier match, while using less time and space.
arXiv Detail & Related papers (2024-06-11T06:55:32Z) - RepoHyper: Search-Expand-Refine on Semantic Graphs for Repository-Level Code Completion [12.173834895070827]
tool is a framework designed to address the complex challenges associated with repository-level code completion.
Central to tool is the em Repo-level Semantic Graph (RSG), a novel semantic graph structure that encapsulates the vast context of code repositories.
Our evaluations show that tool markedly outperforms existing techniques in repository-level code completion.
arXiv Detail & Related papers (2024-03-10T05:10:34Z) - Enhancing LLM-Based Coding Tools through Native Integration of
IDE-Derived Static Context [41.91246546266515]
We argue that Integrated Development Environments (IDEs) can provide direct, accurate and real-time cross-file information for repository-level code completion.
We propose a framework that leveragesIDE native static contexts for cross-context construction and diagnosis results for self-refinement.
arXiv Detail & Related papers (2024-02-06T01:59:41Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
We introduce StepCoder, a novel framework for code generation, consisting of two main components.
CCCS addresses the exploration challenge by breaking the long sequences code generation task into a Curriculum of Code Completion Subtasks.
FGO only optimize the model by masking the unexecuted code segments to provide Fine-Grained Optimization.
Our method improves the ability to explore the output space and outperforms state-of-the-art approaches in corresponding benchmarks.
arXiv Detail & Related papers (2024-02-02T13:14:31Z) - SparseCoder: Identifier-Aware Sparse Transformer for File-Level Code
Summarization [51.67317895094664]
This paper studies file-level code summarization, which can assist programmers in understanding and maintaining large source code projects.
We propose SparseCoder, an identifier-aware sparse transformer for effectively handling long code sequences.
arXiv Detail & Related papers (2024-01-26T09:23:27Z) - RepoCoder: Repository-Level Code Completion Through Iterative Retrieval
and Generation [96.75695811963242]
RepoCoder is a framework to streamline the repository-level code completion process.
It incorporates a similarity-based retriever and a pre-trained code language model.
It consistently outperforms the vanilla retrieval-augmented code completion approach.
arXiv Detail & Related papers (2023-03-22T13:54:46Z) - ReACC: A Retrieval-Augmented Code Completion Framework [53.49707123661763]
We propose a retrieval-augmented code completion framework, leveraging both lexical copying and referring to code with similar semantics by retrieval.
We evaluate our approach in the code completion task in Python and Java programming languages, achieving a state-of-the-art performance on CodeXGLUE benchmark.
arXiv Detail & Related papers (2022-03-15T08:25:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.