DoubleTake: Geometry Guided Depth Estimation
- URL: http://arxiv.org/abs/2406.18387v2
- Date: Mon, 15 Jul 2024 10:15:56 GMT
- Title: DoubleTake: Geometry Guided Depth Estimation
- Authors: Mohamed Sayed, Filippo Aleotti, Jamie Watson, Zawar Qureshi, Guillermo Garcia-Hernando, Gabriel Brostow, Sara Vicente, Michael Firman,
- Abstract summary: Estimating depth from a sequence of posed RGB images is a fundamental computer vision task.
We introduce a reconstruction which combines volume features with a hint of the prior geometry, rendered as a depth map from the current camera location.
We demonstrate that our method can run at interactive speeds, state-of-the-art estimates of depth and 3D scene in both offline and incremental evaluation scenarios.
- Score: 17.464549832122714
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Estimating depth from a sequence of posed RGB images is a fundamental computer vision task, with applications in augmented reality, path planning etc. Prior work typically makes use of previous frames in a multi view stereo framework, relying on matching textures in a local neighborhood. In contrast, our model leverages historical predictions by giving the latest 3D geometry data as an extra input to our network. This self-generated geometric hint can encode information from areas of the scene not covered by the keyframes and it is more regularized when compared to individual predicted depth maps for previous frames. We introduce a Hint MLP which combines cost volume features with a hint of the prior geometry, rendered as a depth map from the current camera location, together with a measure of the confidence in the prior geometry. We demonstrate that our method, which can run at interactive speeds, achieves state-of-the-art estimates of depth and 3D scene reconstruction in both offline and incremental evaluation scenarios.
Related papers
- Invisible Stitch: Generating Smooth 3D Scenes with Depth Inpainting [75.7154104065613]
We introduce a novel depth completion model, trained via teacher distillation and self-training to learn the 3D fusion process.
We also introduce a new benchmarking scheme for scene generation methods that is based on ground truth geometry.
arXiv Detail & Related papers (2024-04-30T17:59:40Z) - FrozenRecon: Pose-free 3D Scene Reconstruction with Frozen Depth Models [67.96827539201071]
We propose a novel test-time optimization approach for 3D scene reconstruction.
Our method achieves state-of-the-art cross-dataset reconstruction on five zero-shot testing datasets.
arXiv Detail & Related papers (2023-08-10T17:55:02Z) - Neural 3D Scene Reconstruction with the Manhattan-world Assumption [58.90559966227361]
This paper addresses the challenge of reconstructing 3D indoor scenes from multi-view images.
Planar constraints can be conveniently integrated into the recent implicit neural representation-based reconstruction methods.
The proposed method outperforms previous methods by a large margin on 3D reconstruction quality.
arXiv Detail & Related papers (2022-05-05T17:59:55Z) - P3Depth: Monocular Depth Estimation with a Piecewise Planarity Prior [133.76192155312182]
We propose a method that learns to selectively leverage information from coplanar pixels to improve the predicted depth.
An extensive evaluation of our method shows that we set the new state of the art in supervised monocular depth estimation.
arXiv Detail & Related papers (2022-04-05T10:03:52Z) - GeoFill: Reference-Based Image Inpainting of Scenes with Complex
Geometry [40.68659515139644]
Reference-guided image inpainting restores image pixels by leveraging the content from another reference image.
We leverage a monocular depth estimate and predict relative pose between cameras, then align the reference image to the target by a differentiable 3D reprojection.
Our approach achieves state-of-the-art performance on both RealEstate10K and MannequinChallenge dataset with large baselines, complex geometry and extreme camera motions.
arXiv Detail & Related papers (2022-01-20T12:17:13Z) - TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view
Stereo [55.30992853477754]
We present TANDEM, a real-time monocular tracking and dense framework.
For pose estimation, TANDEM performs photometric bundle adjustment based on a sliding window of alignments.
TANDEM shows state-of-the-art real-time 3D reconstruction performance.
arXiv Detail & Related papers (2021-11-14T19:01:02Z) - Learning to Detect 3D Reflection Symmetry for Single-View Reconstruction [32.14605731030579]
3D reconstruction from a single RGB image is a challenging problem in computer vision.
Previous methods are usually solely data-driven, which lead to inaccurate 3D shape recovery and limited generalization capability.
We present a geometry-based end-to-end deep learning framework that first detects the mirror plane of reflection symmetry that commonly exists in man-made objects and then predicts depth maps by finding the intra-image pixel-wise correspondence of the symmetry.
arXiv Detail & Related papers (2020-06-17T17:58:59Z) - Consistent Video Depth Estimation [57.712779457632024]
We present an algorithm for reconstructing dense, geometrically consistent depth for all pixels in a monocular video.
We leverage a conventional structure-from-motion reconstruction to establish geometric constraints on pixels in the video.
Our algorithm is able to handle challenging hand-held captured input videos with a moderate degree of dynamic motion.
arXiv Detail & Related papers (2020-04-30T17:59:26Z) - Atlas: End-to-End 3D Scene Reconstruction from Posed Images [13.154808583020229]
We present an end-to-end 3D reconstruction method for a scene by directly regressing a truncated signed distance function (TSDF) from a set of posed RGB images.
A 2D CNN extracts features from each image independently which are then back-projected and accumulated into a voxel volume.
A 3D CNN refines the accumulated features and predicts the TSDF values.
arXiv Detail & Related papers (2020-03-23T17:59:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.