Improving Hyperparameter Optimization with Checkpointed Model Weights
- URL: http://arxiv.org/abs/2406.18630v1
- Date: Wed, 26 Jun 2024 17:59:54 GMT
- Title: Improving Hyperparameter Optimization with Checkpointed Model Weights
- Authors: Nikhil Mehta, Jonathan Lorraine, Steve Masson, Ramanathan Arunachalam, Zaid Pervaiz Bhat, James Lucas, Arun George Zachariah,
- Abstract summary: In this work, we propose an HPO method for neural networks using logged checkpoints of the trained weights.
Our method, Forecasting Model Search (FMS), embeds weights into a Gaussian process deep kernel surrogate model.
- Score: 16.509585437768063
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: When training deep learning models, the performance depends largely on the selected hyperparameters. However, hyperparameter optimization (HPO) is often one of the most expensive parts of model design. Classical HPO methods treat this as a black-box optimization problem. However, gray-box HPO methods, which incorporate more information about the setup, have emerged as a promising direction for more efficient optimization. For example, using intermediate loss evaluations to terminate bad selections. In this work, we propose an HPO method for neural networks using logged checkpoints of the trained weights to guide future hyperparameter selections. Our method, Forecasting Model Search (FMS), embeds weights into a Gaussian process deep kernel surrogate model, using a permutation-invariant graph metanetwork to be data-efficient with the logged network weights. To facilitate reproducibility and further research, we open-source our code at https://github.com/NVlabs/forecasting-model-search.
Related papers
- Adaptive Preference Scaling for Reinforcement Learning with Human Feedback [103.36048042664768]
Reinforcement learning from human feedback (RLHF) is a prevalent approach to align AI systems with human values.
We propose a novel adaptive preference loss, underpinned by distributionally robust optimization (DRO)
Our method is versatile and can be readily adapted to various preference optimization frameworks.
arXiv Detail & Related papers (2024-06-04T20:33:22Z) - MADA: Meta-Adaptive Optimizers through hyper-gradient Descent [73.1383658672682]
We introduce Meta-Adaptives (MADA), a unified framework that can generalize several known convergences and dynamically learn the most suitable one during training.
We empirically compare MADA to other populars on vision and language tasks, and find that MADA consistently outperforms Adam and other populars.
We also propose AVGrad, a modification of AMS that replaces the maximum operator with averaging, which is more suitable for hyper-gradient optimization.
arXiv Detail & Related papers (2024-01-17T00:16:46Z) - Model Performance Prediction for Hyperparameter Optimization of Deep
Learning Models Using High Performance Computing and Quantum Annealing [0.0]
We show that integrating model performance prediction with early stopping methods holds great potential to speed up the HPO process of deep learning models.
We propose a novel algorithm called Swift-Hyperband that can use either classical or quantum support vector regression for performance prediction.
arXiv Detail & Related papers (2023-11-29T10:32:40Z) - Deep Ranking Ensembles for Hyperparameter Optimization [9.453554184019108]
We present a novel method that meta-learns neural network surrogates optimized for ranking the configurations' performances while modeling their uncertainty via ensembling.
In a large-scale experimental protocol comprising 12 baselines, 16 HPO search spaces and 86 datasets/tasks, we demonstrate that our method achieves new state-of-the-art results in HPO.
arXiv Detail & Related papers (2023-03-27T13:52:40Z) - Pre-training helps Bayesian optimization too [49.28382118032923]
We seek an alternative practice for setting functional priors.
In particular, we consider the scenario where we have data from similar functions that allow us to pre-train a tighter distribution a priori.
Our results show that our method is able to locate good hyper parameters at least 3 times more efficiently than the best competing methods.
arXiv Detail & Related papers (2022-07-07T04:42:54Z) - Towards Learning Universal Hyperparameter Optimizers with Transformers [57.35920571605559]
We introduce the OptFormer, the first text-based Transformer HPO framework that provides a universal end-to-end interface for jointly learning policy and function prediction.
Our experiments demonstrate that the OptFormer can imitate at least 7 different HPO algorithms, which can be further improved via its function uncertainty estimates.
arXiv Detail & Related papers (2022-05-26T12:51:32Z) - Towards Robust and Automatic Hyper-Parameter Tunning [39.04604349338802]
We introduce a new class of HPO method and explore how the low-rank factorization of intermediate layers of a convolutional network can be used to define an analytical response surface.
We quantify how this surface behaves as a surrogate to model performance and can be solved using a trust-region search algorithm, which we call autoHyper.
arXiv Detail & Related papers (2021-11-28T05:27:34Z) - Conservative Objective Models for Effective Offline Model-Based
Optimization [78.19085445065845]
Computational design problems arise in a number of settings, from synthetic biology to computer architectures.
We propose a method that learns a model of the objective function that lower bounds the actual value of the ground-truth objective on out-of-distribution inputs.
COMs are simple to implement and outperform a number of existing methods on a wide range of MBO problems.
arXiv Detail & Related papers (2021-07-14T17:55:28Z) - Optimizing Large-Scale Hyperparameters via Automated Learning Algorithm [97.66038345864095]
We propose a new hyperparameter optimization method with zeroth-order hyper-gradients (HOZOG)
Specifically, we first formulate hyperparameter optimization as an A-based constrained optimization problem.
Then, we use the average zeroth-order hyper-gradients to update hyper parameters.
arXiv Detail & Related papers (2021-02-17T21:03:05Z) - Multi-level Training and Bayesian Optimization for Economical
Hyperparameter Optimization [12.92634461859467]
In this paper, we develop an effective approach to reducing the total amount of required training time for Hyperparameter Optimization.
We propose a truncated additive Gaussian process model to calibrate approximate performance measurements generated by light training.
Based on the model, a sequential model-based algorithm is developed to generate the performance profile of the configuration space as well as find optimal ones.
arXiv Detail & Related papers (2020-07-20T09:03:02Z) - Automatic Setting of DNN Hyper-Parameters by Mixing Bayesian
Optimization and Tuning Rules [0.6875312133832078]
We build a new algorithm for evaluating and analyzing the results of the network on the training and validation sets.
We use a set of tuning rules to add new hyper-parameters and/or to reduce the hyper- parameter search space to select a better combination.
arXiv Detail & Related papers (2020-06-03T08:53:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.