A simple and improved algorithm for noisy, convex, zeroth-order optimisation
- URL: http://arxiv.org/abs/2406.18672v1
- Date: Wed, 26 Jun 2024 18:19:10 GMT
- Title: A simple and improved algorithm for noisy, convex, zeroth-order optimisation
- Authors: Alexandra Carpentier,
- Abstract summary: We construct an algorithm that returns a point $hat xin barmathcal X$ such that $f(hat x)$ is as small as possible.
We prove that this method is such that the $f(hat x) - min_xin barmathcal X f(x)$ is of smaller order than $d2/sqrtn$ up to poly-logarithmic terms.
- Score: 59.51990161522328
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we study the problem of noisy, convex, zeroth order optimisation of a function $f$ over a bounded convex set $\bar{\mathcal X}\subset \mathbb{R}^d$. Given a budget $n$ of noisy queries to the function $f$ that can be allocated sequentially and adaptively, our aim is to construct an algorithm that returns a point $\hat x\in \bar{\mathcal X}$ such that $f(\hat x)$ is as small as possible. We provide a conceptually simple method inspired by the textbook center of gravity method, but adapted to the noisy and zeroth order setting. We prove that this method is such that the $f(\hat x) - \min_{x\in \bar{\mathcal X}} f(x)$ is of smaller order than $d^2/\sqrt{n}$ up to poly-logarithmic terms. We slightly improve upon existing literature, where to the best of our knowledge the best known rate is in [Lattimore, 2024] is of order $d^{2.5}/\sqrt{n}$, albeit for a more challenging problem. Our main contribution is however conceptual, as we believe that our algorithm and its analysis bring novel ideas and are significantly simpler than existing approaches.
Related papers
- Efficient Continual Finite-Sum Minimization [52.5238287567572]
We propose a key twist into the finite-sum minimization, dubbed as continual finite-sum minimization.
Our approach significantly improves upon the $mathcalO(n/epsilon)$ FOs that $mathrmStochasticGradientDescent$ requires.
We also prove that there is no natural first-order method with $mathcalOleft(n/epsilonalpharight)$ complexity gradient for $alpha 1/4$, establishing that the first-order complexity of our method is nearly tight.
arXiv Detail & Related papers (2024-06-07T08:26:31Z) - Dueling Optimization with a Monotone Adversary [35.850072415395395]
We study the problem of dueling optimization with a monotone adversary, which is a generalization of (noiseless) dueling convex optimization.
The goal is to design an online algorithm to find a minimizer $mathbfx*$ for a function $fcolon X to mathbbRd.
arXiv Detail & Related papers (2023-11-18T23:55:59Z) - An Optimal Algorithm for Strongly Convex Min-min Optimization [79.11017157526815]
Existing optimal first-order methods require $mathcalO(sqrtmaxkappa_x,kappa_y log 1/epsilon)$ of computations of both $nabla_x f(x,y)$ and $nabla_y f(x,y)$.
We propose a new algorithm that only requires $mathcalO(sqrtkappa_x log 1/epsilon)$ of computations of $nabla_x f(x,
arXiv Detail & Related papers (2022-12-29T19:26:12Z) - Lifted Primal-Dual Method for Bilinearly Coupled Smooth Minimax
Optimization [47.27237492375659]
We study the bilinearly coupled minimax problem: $min_x max_y f(x) + ytop A x - h(y)$, where $f$ and $h$ are both strongly convex smooth functions.
No known first-order algorithms have hitherto achieved the lower complexity bound of $Omega(sqrtfracL_xmu_x + frac|A|sqrtmu_x,mu_y) log(frac1vareps
arXiv Detail & Related papers (2022-01-19T05:56:19Z) - Contextual Recommendations and Low-Regret Cutting-Plane Algorithms [49.91214213074933]
We consider the following variant of contextual linear bandits motivated by routing applications in navigational engines and recommendation systems.
We design novel cutting-plane algorithms with low "regret" -- the total distance between the true point $w*$ and the hyperplanes the separation oracle returns.
arXiv Detail & Related papers (2021-06-09T05:39:05Z) - Saddle Point Optimization with Approximate Minimization Oracle [8.680676599607125]
A major approach to saddle point optimization $min_xmax_y f(x, y)$ is a gradient based approach as is popularized by generative adversarial networks (GANs)
In contrast, we analyze an alternative approach relying only on an oracle that solves a minimization problem approximately.
Our approach locates approximate solutions $x'$ and $y'$ to $min_x'f(x', y)$ at a given point $(x, y)$ and updates $(x, y)$ toward these approximate solutions $(x', y'
arXiv Detail & Related papers (2021-03-29T23:03:24Z) - Optimal Regret Algorithm for Pseudo-1d Bandit Convex Optimization [51.23789922123412]
We study online learning with bandit feedback (i.e. learner has access to only zeroth-order oracle) where cost/reward functions admit a "pseudo-1d" structure.
We show a lower bound of $min(sqrtdT, T3/4)$ for the regret of any algorithm, where $T$ is the number of rounds.
We propose a new algorithm sbcalg that combines randomized online gradient descent with a kernelized exponential weights method to exploit the pseudo-1d structure effectively.
arXiv Detail & Related papers (2021-02-15T08:16:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.