Learning to Correct for QA Reasoning with Black-box LLMs
- URL: http://arxiv.org/abs/2406.18695v2
- Date: Tue, 08 Oct 2024 06:09:26 GMT
- Title: Learning to Correct for QA Reasoning with Black-box LLMs
- Authors: Jaehyung Kim, Dongyoung Kim, Yiming Yang,
- Abstract summary: We propose CoBB (Correct for improving QA reasoning of Black-Box LLMs) as an open challenge in machine learning.
It uses a trained adaptation model to perform a seq2seq mapping from the often-imperfect reasonings of the original black-box LLM to the correct or improved reasonings.
Our experimental results demonstrate that CoBB significantly improves reasoning accuracy across various QA benchmarks.
- Score: 37.13135300208977
- License:
- Abstract: An open challenge in recent machine learning is about how to improve the reasoning capability of large language models (LLMs) in a black-box setting, i.e., without access to detailed information such as output token probabilities. Existing approaches either rely on accessibility (which is often unrealistic) or involve significantly increased train- and inference-time costs. This paper addresses those limitations or shortcomings by proposing a novel approach, namely CoBB (Correct for improving QA reasoning of Black-Box LLMs). It uses a trained adaptation model to perform a seq2seq mapping from the often-imperfect reasonings of the original black-box LLM to the correct or improved reasonings. Specifically, the adaptation model is initialized with a relatively small open-source LLM and adapted over a collection of sub-sampled training pairs. To select the representative pairs of correct and incorrect reasonings, we formulated the dataset construction as an optimization problem that minimizes the statistical divergence between the sampled subset and the entire collection, and solved it via a genetic algorithm. We then train the adaptation model over the sampled pairs by contrasting the likelihoods of correct and incorrect reasonings. Our experimental results demonstrate that CoBB significantly improves reasoning accuracy across various QA benchmarks, compared to the best-performing adaptation baselines.
Related papers
- Language Models are Hidden Reasoners: Unlocking Latent Reasoning Capabilities via Self-Rewarding [74.31981011985681]
Large language models (LLMs) have shown impressive capabilities, but still struggle with complex reasoning tasks requiring multiple steps.
We introduce LaTent Reasoning Optimization (LaTRO), a principled framework that formulates reasoning as sampling from a latent distribution.
We validate LaTRO through experiments on GSM8K and ARC-Challenge datasets using multiple model architectures.
arXiv Detail & Related papers (2024-11-06T22:02:30Z) - Subtle Errors Matter: Preference Learning via Error-injected Self-editing [59.405145971637204]
We propose a novel preference learning framework called eRror-Injected Self-Editing (RISE)
RISE injects predefined subtle errors into partial tokens of correct solutions to construct hard pairs for error mitigation.
Experiments validate the effectiveness of RISE, with preference learning on Qwen2-7B-Instruct yielding notable improvements of 3.0% on GSM8K and 7.9% on MATH.
arXiv Detail & Related papers (2024-10-09T07:43:38Z) - Improving LLM Reasoning through Scaling Inference Computation with Collaborative Verification [52.095460362197336]
Large language models (LLMs) struggle with consistent and accurate reasoning.
LLMs are trained primarily on correct solutions, reducing their ability to detect and learn from errors.
We propose a novel collaborative method integrating Chain-of-Thought (CoT) and Program-of-Thought (PoT) solutions for verification.
arXiv Detail & Related papers (2024-10-05T05:21:48Z) - Thought-Path Contrastive Learning via Premise-Oriented Data Augmentation for Logical Reading Comprehension [9.67774998354062]
Previous research has primarily focused on enhancing logical reasoning capabilities through Chain-of-Thought (CoT) or data augmentation.
We propose a Premise-Oriented Data Augmentation (PODA) framework to generate CoT rationales including analyses for both correct and incorrect options.
We also introduce a novel thought-path contrastive learning method that compares reasoning paths between the original and counterfactual samples.
arXiv Detail & Related papers (2024-09-22T15:44:43Z) - Accurate and Efficient Fine-Tuning of Quantized Large Language Models Through Optimal Balance [20.659750151408186]
Large Language Models (LLMs) have demonstrated impressive performance across various domains.
Existing solutions combine parameter quantization with Low-Rank Adaptation (LoRA)
We propose Quantized LLMs with Balanced-rank Adaptation (Q-BaRA) and Quantization-Aware Fine-tuning with Higher Rank Adaptation (QA-HiRA)
arXiv Detail & Related papers (2024-07-24T06:16:37Z) - Learning to Check: Unleashing Potentials for Self-Correction in Large Language Models [5.463333911506443]
We aim to enhance the self-checking capabilities of large language models (LLMs) by constructing training data for checking tasks.
We propose a specialized checking format called "Step CoT Check"
Experiments demonstrate that fine-tuning with the "Step CoT Check" format significantly improves the self-checking and self-correction abilities of LLMs.
arXiv Detail & Related papers (2024-02-20T14:23:23Z) - MinPrompt: Graph-based Minimal Prompt Data Augmentation for Few-shot Question Answering [64.6741991162092]
We present MinPrompt, a minimal data augmentation framework for open-domain question answering.
We transform the raw text into a graph structure to build connections between different factual sentences.
We then apply graph algorithms to identify the minimal set of sentences needed to cover the most information in the raw text.
We generate QA pairs based on the identified sentence subset and train the model on the selected sentences to obtain the final model.
arXiv Detail & Related papers (2023-10-08T04:44:36Z) - SatLM: Satisfiability-Aided Language Models Using Declarative Prompting [68.40726892904286]
We propose a new satisfiability-aided language modeling (SatLM) approach for improving the reasoning capabilities of large language models (LLMs)
We use an LLM to generate a declarative task specification rather than an imperative program and leverage an off-the-shelf automated theorem prover to derive the final answer.
We evaluate SATLM on 8 different datasets and show that it consistently outperforms program-aided LMs in the imperative paradigm.
arXiv Detail & Related papers (2023-05-16T17:55:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.