Leapfrogging Sycamore: Harnessing 1432 GPUs for 7$\times$ Faster Quantum Random Circuit Sampling
- URL: http://arxiv.org/abs/2406.18889v1
- Date: Thu, 27 Jun 2024 05:01:47 GMT
- Title: Leapfrogging Sycamore: Harnessing 1432 GPUs for 7$\times$ Faster Quantum Random Circuit Sampling
- Authors: Xian-He Zhao, Han-Sen Zhong, Feng Pan, Zi-Han Chen, Rong Fu, Zhongling Su, Xiaotong Xie, Chaoxing Zhao, Pan Zhang, Wanli Ouyang, Chao-Yang Lu, Jian-Wei Pan, Ming-Cheng Chen,
- Abstract summary: Random quantum circuit sampling serves as a benchmark to demonstrate quantum computational advantage.
Recent progress in classical algorithms has significantly reduced the classical simulation time.
Our work provides the first unambiguous experimental evidence to refute textitSycamore's claim of quantum advantage.
- Score: 40.83618005962484
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Random quantum circuit sampling serves as a benchmark to demonstrate quantum computational advantage. Recent progress in classical algorithms, especially those based on tensor network methods, has significantly reduced the classical simulation time and challenged the claim of the first-generation quantum advantage experiments. However, in terms of generating uncorrelated samples, time-to-solution, and energy consumption, previous classical simulation experiments still underperform the \textit{Sycamore} processor. Here we report an energy-efficient classical simulation algorithm, using 1432 GPUs to simulate quantum random circuit sampling which generates uncorrelated samples with higher linear cross entropy score and is 7 times faster than \textit{Sycamore} 53 qubits experiment. We propose a post-processing algorithm to reduce the overall complexity, and integrated state-of-the-art high-performance general-purpose GPU to achieve two orders of lower energy consumption compared to previous works. Our work provides the first unambiguous experimental evidence to refute \textit{Sycamore}'s claim of quantum advantage, and redefines the boundary of quantum computational advantage using random circuit sampling.
Related papers
- State of practice: evaluating GPU performance of state vector and tensor
network methods [2.7930955543692817]
This article investigates the limits of current state-of-the-art simulation techniques on a test bench made of eight widely used quantum subroutines.
We highlight how to select the best simulation strategy, obtaining a speedup of up to an order of magnitude.
arXiv Detail & Related papers (2024-01-11T09:22:21Z) - Efficient Quantum Circuit Simulation by Tensor Network Methods on Modern GPUs [11.87665112550076]
In quantum hardware, primary simulation methods are based on state vectors and tensor networks.
As the number of qubits and quantum gates grows larger, traditional state-vector based quantum circuit simulation methods prove inadequate due to the overwhelming size of the Hilbert space and extensive entanglement.
In this study, we propose general optimization strategies from two aspects: computational efficiency and accuracy.
arXiv Detail & Related papers (2023-10-06T02:24:05Z) - Fast classical simulation of evidence for the utility of quantum
computing before fault tolerance [0.0]
We show that a classical algorithm based on sparse Pauli dynamics can efficiently simulate quantum circuits studied in a recent experiment on 127 qubits of IBM's Eagle processor.
Our simulations on a single core of a laptop are orders of magnitude faster than the reported walltime of the quantum simulations, and are in good agreement with the zero-noise extrapolated experimental results.
arXiv Detail & Related papers (2023-06-28T17:08:00Z) - Effective quantum volume, fidelity and computational cost of noisy
quantum processing experiments [0.0]
Experimental noisy quantum processors can compete with and surpass all known algorithms on state-of-the-art supercomputers.
We provide a framework to explain the tradeoff between experimentally achievable signal-to-noise ratio for a specific observable, and the corresponding computational cost.
arXiv Detail & Related papers (2023-06-28T07:12:47Z) - Exact and approximate simulation of large quantum circuits on a single
GPU [0.46603287532620735]
We report competitive execution times for the exact simulation of Fourier transform circuits with up to 27 qubits.
We also demonstrate the approximate simulation of all amplitudes of random circuits acting on 54 qubits with 7 layers at average fidelity higher than $4%$.
arXiv Detail & Related papers (2023-04-28T16:45:28Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z) - Efficient classical simulation of random shallow 2D quantum circuits [104.50546079040298]
Random quantum circuits are commonly viewed as hard to simulate classically.
We show that approximate simulation of typical instances is almost as hard as exact simulation.
We also conjecture that sufficiently shallow random circuits are efficiently simulable more generally.
arXiv Detail & Related papers (2019-12-31T19:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.