Improving Taxonomic Image-based Out-of-distribution Detection With DNA Barcodes
- URL: http://arxiv.org/abs/2406.18999v1
- Date: Thu, 27 Jun 2024 08:39:16 GMT
- Title: Improving Taxonomic Image-based Out-of-distribution Detection With DNA Barcodes
- Authors: Mikko Impiƶ, Jenni Raitoharju,
- Abstract summary: We study if DNA barcodes can also support in finding the outlier images based on the outlier DNA sequence's similarity to the seen classes.
We experimentally show that the proposed approach improves taxonomic OOD detection compared to all common baselines.
- Score: 6.1593136743688355
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Image-based species identification could help scaling biodiversity monitoring to a global scale. Many challenges still need to be solved in order to implement these systems in real-world applications. A reliable image-based monitoring system must detect out-of-distribution (OOD) classes it has not been presented before. This is challenging especially with fine-grained classes. Emerging environmental monitoring techniques, DNA metabarcoding and eDNA, can help by providing information on OOD classes that are present in a sample. In this paper, we study if DNA barcodes can also support in finding the outlier images based on the outlier DNA sequence's similarity to the seen classes. We propose a re-ordering approach that can be easily applied on any pre-trained models and existing OOD detection methods. We experimentally show that the proposed approach improves taxonomic OOD detection compared to all common baselines. We also show that the method works thanks to a correlation between visual similarity and DNA barcode proximity. The code and data are available at https://github.com/mikkoim/dnaimg-ood.
Related papers
- Can Your Generative Model Detect Out-of-Distribution Covariate Shift? [2.0144831048903566]
We propose a novel method for detecting Out-of-Distribution (OOD) sensory data using conditional Normalizing Flows (cNFs)
Our results on CIFAR10 vs. CIFAR10-C and ImageNet200 vs. ImageNet200-C demonstrate the effectiveness of the method.
arXiv Detail & Related papers (2024-09-04T19:27:56Z) - Representation Norm Amplification for Out-of-Distribution Detection in Long-Tail Learning [10.696635172502141]
We introduce our method, called textitRepresentation Norm Amplification (RNA), which solves the problem of detecting out-of-distribution samples.
Experiments show that RNA achieves superior performance in both OOD detection and classification compared to the state-of-the-art methods.
arXiv Detail & Related papers (2024-08-20T09:27:07Z) - A noisy elephant in the room: Is your out-of-distribution detector robust to label noise? [49.88894124047644]
We take a closer look at 20 state-of-the-art OOD detection methods.
We show that poor separation between incorrectly classified ID samples vs. OOD samples is an overlooked yet important limitation of existing methods.
arXiv Detail & Related papers (2024-04-02T09:40:22Z) - GOODAT: Towards Test-time Graph Out-of-Distribution Detection [103.40396427724667]
Graph neural networks (GNNs) have found widespread application in modeling graph data across diverse domains.
Recent studies have explored graph OOD detection, often focusing on training a specific model or modifying the data on top of a well-trained GNN.
This paper introduces a data-centric, unsupervised, and plug-and-play solution that operates independently of training data and modifications of GNN architecture.
arXiv Detail & Related papers (2024-01-10T08:37:39Z) - EAT: Towards Long-Tailed Out-of-Distribution Detection [55.380390767978554]
This paper addresses the challenging task of long-tailed OOD detection.
The main difficulty lies in distinguishing OOD data from samples belonging to the tail classes.
We propose two simple ideas: (1) Expanding the in-distribution class space by introducing multiple abstention classes, and (2) Augmenting the context-limited tail classes by overlaying images onto the context-rich OOD data.
arXiv Detail & Related papers (2023-12-14T13:47:13Z) - BarcodeBERT: Transformers for Biodiversity Analysis [19.082058886309028]
We propose BarcodeBERT, the first self-supervised method for general biodiversity analysis.
BarcodeBERT pretrained on a large DNA barcode dataset outperforms DNABERT and DNABERT-2 on multiple downstream classification tasks.
arXiv Detail & Related papers (2023-11-04T13:25:49Z) - From Global to Local: Multi-scale Out-of-distribution Detection [129.37607313927458]
Out-of-distribution (OOD) detection aims to detect "unknown" data whose labels have not been seen during the in-distribution (ID) training process.
Recent progress in representation learning gives rise to distance-based OOD detection.
We propose Multi-scale OOD DEtection (MODE), a first framework leveraging both global visual information and local region details.
arXiv Detail & Related papers (2023-08-20T11:56:25Z) - Seamless Iterative Semi-Supervised Correction of Imperfect Labels in
Microscopy Images [57.42492501915773]
In-vitro tests are an alternative to animal testing for the toxicity of medical devices.
Human fatigue plays a role in error making, making the use of deep learning appealing.
We propose Seamless Iterative Semi-Supervised correction of Imperfect labels (SISSI)
Our method successfully provides an adaptive early learning correction technique for object detection.
arXiv Detail & Related papers (2022-08-05T18:52:20Z) - A Novel Data Augmentation Technique for Out-of-Distribution Sample
Detection using Compounded Corruptions [7.8353348433211165]
We propose a novel Compounded Corruption technique for the OOD data augmentation termed CnC.
Unlike current state-of-the-art (SOTA) techniques, CnC does not require backpropagation or ensembling at the test time.
Our extensive comparison with 20 methods from the major conferences in last 4 years show that a model trained using CnC based data augmentation, significantly outperforms SOTA.
arXiv Detail & Related papers (2022-07-28T07:17:11Z) - CSI: Novelty Detection via Contrastive Learning on Distributionally
Shifted Instances [77.28192419848901]
We propose a simple, yet effective method named contrasting shifted instances (CSI)
In addition to contrasting a given sample with other instances as in conventional contrastive learning methods, our training scheme contrasts the sample with distributionally-shifted augmentations of itself.
Our experiments demonstrate the superiority of our method under various novelty detection scenarios.
arXiv Detail & Related papers (2020-07-16T08:32:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.