MCNC: Manifold-Constrained Reparameterization for Neural Compression
- URL: http://arxiv.org/abs/2406.19301v2
- Date: Fri, 25 Apr 2025 01:15:22 GMT
- Title: MCNC: Manifold-Constrained Reparameterization for Neural Compression
- Authors: Chayne Thrash, Ali Abbasi, Reed Andreas, Parsa Nooralinejad, Soroush Abbasi Koohpayegani, Hamed Pirsiavash, Soheil Kolouri,
- Abstract summary: We present a novel model compression method, which we term Manifold-Constrained Neural Compression (MCNC)<n>By constraining the parameter space to our proposed manifold, we can identify high-quality solutions.<n>Our method significantly outperforms state-of-the-art baselines in terms of compression, accuracy, and/or model reconstruction time.
- Score: 21.70510507535041
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The outstanding performance of large foundational models across diverse tasks, from computer vision to speech and natural language processing, has significantly increased their demand. However, storing and transmitting these models poses significant challenges due to their massive size (e.g., 750GB for Llama 3.1 405B). Recent literature has focused on compressing the original weights or reducing the number of parameters required for fine-tuning these models. These compression methods generally constrain the parameter space, for example, through low-rank reparametrization (e.g., LoRA), pruning, or quantization (e.g., QLoRA) during or after the model training. In this paper, we present a novel model compression method, which we term Manifold-Constrained Neural Compression (MCNC). This method constrains the parameter space to low-dimensional pre-defined and frozen nonlinear manifolds, which effectively cover this space. Given the prevalence of good solutions in over-parameterized deep neural networks, we show that by constraining the parameter space to our proposed manifold, we can identify high-quality solutions while achieving unprecedented compression rates across a wide variety of tasks and architectures. Through extensive experiments in computer vision and natural language processing tasks, we demonstrate that our method significantly outperforms state-of-the-art baselines in terms of compression, accuracy, and/or model reconstruction time. Our code is publicly available at https://github.com/mint-vu/MCNC.
Related papers
- Choose Your Model Size: Any Compression by a Single Gradient Descent [9.074689052563878]
We present Any Compression via Iterative Pruning (ACIP)
ACIP is an algorithmic approach to determine a compression-performance trade-off from a single gradient descent run.
We show that ACIP seamlessly complements common quantization-based compression techniques.
arXiv Detail & Related papers (2025-02-03T18:40:58Z) - Sparse Gradient Compression for Fine-Tuning Large Language Models [58.44973963468691]
Fine-tuning large language models (LLMs) for downstream tasks has become increasingly crucial due to their widespread use and the growing availability of open-source models.
High memory costs associated with fine-tuning remain a significant challenge, especially as models increase in size.
We propose sparse compression gradient (SGC) to address these limitations.
arXiv Detail & Related papers (2025-02-01T04:18:28Z) - Computer Vision Model Compression Techniques for Embedded Systems: A Survey [75.38606213726906]
This paper covers the main model compression techniques applied for computer vision tasks.
We present the characteristics of compression subareas, compare different approaches, and discuss how to choose the best technique.
We also share codes to assist researchers and new practitioners in overcoming initial implementation challenges.
arXiv Detail & Related papers (2024-08-15T16:41:55Z) - Data-freeWeight Compress and Denoise for Large Language Models [101.53420111286952]
We propose a novel approach termed Data-free Joint Rank-k Approximation for compressing the parameter matrices.
We achieve a model pruning of 80% parameters while retaining 93.43% of the original performance without any calibration data.
arXiv Detail & Related papers (2024-02-26T05:51:47Z) - A Survey on Transformer Compression [84.18094368700379]
Transformer plays a vital role in the realms of natural language processing (NLP) and computer vision (CV)
Model compression methods reduce the memory and computational cost of Transformer.
This survey provides a comprehensive review of recent compression methods, with a specific focus on their application to Transformer-based models.
arXiv Detail & Related papers (2024-02-05T12:16:28Z) - CompactifAI: Extreme Compression of Large Language Models using Quantum-Inspired Tensor Networks [1.5199992713356987]
This paper introduces CompactifAI, an innovative compression approach using quantum-inspired networks.
Our method is versatile and can be implemented with - or on top of - other compression techniques.
As a benchmark, we demonstrate that a combination of CompactifAI with quantization allows to reduce a 93% memory size of LlaMA 7B.
arXiv Detail & Related papers (2024-01-25T11:45:21Z) - Activations and Gradients Compression for Model-Parallel Training [85.99744701008802]
We study how simultaneous compression of activations and gradients in model-parallel distributed training setup affects convergence.
We find that gradients require milder compression rates than activations.
Experiments also show that models trained with TopK perform well only when compression is also applied during inference.
arXiv Detail & Related papers (2024-01-15T15:54:54Z) - Rethinking Compression: Reduced Order Modelling of Latent Features in
Large Language Models [9.91972450276408]
This paper introduces an innovative approach for the parametric and practical compression of Large Language Models (LLMs) based on reduced order modelling.
Our method represents a significant advancement in model compression by leveraging matrix decomposition, demonstrating superior efficacy compared to the prevailing state-of-the-art structured pruning method.
arXiv Detail & Related papers (2023-12-12T07:56:57Z) - The Cost of Compression: Investigating the Impact of Compression on
Parametric Knowledge in Language Models [11.156816338995503]
Large language models (LLMs) provide faster inference, smaller memory footprints, and enables local deployment.
Two standard compression techniques are pruning and quantization, with the former eliminating redundant connections in model layers and the latter representing model parameters with fewer bits.
Existing research on LLM compression primarily focuses on performance in terms of general metrics like perplexity or downstream task accuracy.
More fine-grained metrics, such as those measuring parametric knowledge, remain significantly underexplored.
arXiv Detail & Related papers (2023-12-01T22:27:12Z) - A priori compression of convolutional neural networks for wave
simulators [0.0]
The present neural network designs include millions of parameters, which makes it difficult to install such complex models on devices that have limited memory.
We propose a compressed tensor format of convolutional layer, a priori, before the training of the neural network.
We show that the proposed convolutinal compression technique achieves equivalent performance as classical convolutional layers with fewer trainable parameters and lower memory footprint.
arXiv Detail & Related papers (2023-04-11T04:18:59Z) - Online Model Compression for Federated Learning with Large Models [8.48327410170884]
Online Model Compression (OMC) is a framework that stores model parameters in a compressed format and decompresses them only when needed.
OMC can reduce memory usage and communication cost of model parameters by up to 59% while attaining comparable accuracy and training speed when compared with full-precision training.
arXiv Detail & Related papers (2022-05-06T22:43:03Z) - Automatic Mixed-Precision Quantization Search of BERT [62.65905462141319]
Pre-trained language models such as BERT have shown remarkable effectiveness in various natural language processing tasks.
These models usually contain millions of parameters, which prevents them from practical deployment on resource-constrained devices.
We propose an automatic mixed-precision quantization framework designed for BERT that can simultaneously conduct quantization and pruning in a subgroup-wise level.
arXiv Detail & Related papers (2021-12-30T06:32:47Z) - What do Compressed Large Language Models Forget? Robustness Challenges
in Model Compression [68.82486784654817]
We study two popular model compression techniques including knowledge distillation and pruning.
We show that compressed models are significantly less robust than their PLM counterparts on adversarial test sets.
We develop a regularization strategy for model compression based on sample uncertainty.
arXiv Detail & Related papers (2021-10-16T00:20:04Z) - Compression strategies and space-conscious representations for deep
neural networks [0.3670422696827526]
Recent advances in deep learning have made available powerful convolutional neural networks (CNN) with state-of-the-art performance in several real-world applications.
CNNs have millions of parameters, thus they are not deployable on resource-limited platforms.
In this paper, we investigate the impact of lossy compression of CNNs by weight pruning and quantization.
arXiv Detail & Related papers (2020-07-15T19:41:19Z) - Self-Supervised GAN Compression [32.21713098893454]
We show that a standard model compression technique, weight pruning, cannot be applied to GANs using existing methods.
We then develop a self-supervised compression technique which uses the trained discriminator to supervise the training of a compressed generator.
We show that this framework has a compelling performance to high degrees of sparsity, can be easily applied to new tasks and models, and enables meaningful comparisons between different pruning granularities.
arXiv Detail & Related papers (2020-07-03T04:18:54Z) - Training with Quantization Noise for Extreme Model Compression [57.51832088938618]
We tackle the problem of producing compact models, maximizing their accuracy for a given model size.
A standard solution is to train networks with Quantization Aware Training, where the weights are quantized during training and the gradients approximated with the Straight-Through Estimator.
In this paper, we extend this approach to work beyond int8 fixed-point quantization with extreme compression methods.
arXiv Detail & Related papers (2020-04-15T20:10:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.