Learning Visual Conditioning Tokens to Correct Domain Shift for Fully Test-time Adaptation
- URL: http://arxiv.org/abs/2406.19341v3
- Date: Wed, 17 Jul 2024 01:57:44 GMT
- Title: Learning Visual Conditioning Tokens to Correct Domain Shift for Fully Test-time Adaptation
- Authors: Yushun Tang, Shuoshuo Chen, Zhehan Kan, Yi Zhang, Qinghai Guo, Zhihai He,
- Abstract summary: In transformer-based image classification, the class token at the first transformer encoder layer can be learned to capture the domain-specific characteristics of target samples during test-time adaptation.
We propose a bi-level learning approach to capture the long-term variations of domain-specific characteristics while accommodating local variations of instance-specific characteristics.
Our proposed bi-level visual conditioning token learning method is able to achieve significantly improved test-time adaptation performance by up to 1.9%.
- Score: 24.294049653744185
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fully test-time adaptation aims to adapt the network model based on sequential analysis of input samples during the inference stage to address the cross-domain performance degradation problem of deep neural networks. This work is based on the following interesting finding: in transformer-based image classification, the class token at the first transformer encoder layer can be learned to capture the domain-specific characteristics of target samples during test-time adaptation. This learned token, when combined with input image patch embeddings, is able to gradually remove the domain-specific information from the feature representations of input samples during the transformer encoding process, thereby significantly improving the test-time adaptation performance of the source model across different domains. We refer to this class token as visual conditioning token (VCT). To successfully learn the VCT, we propose a bi-level learning approach to capture the long-term variations of domain-specific characteristics while accommodating local variations of instance-specific characteristics. Experimental results on the benchmark datasets demonstrate that our proposed bi-level visual conditioning token learning method is able to achieve significantly improved test-time adaptation performance by up to 1.9%.
Related papers
- Dual-Path Adversarial Lifting for Domain Shift Correction in Online Test-time Adaptation [59.18151483767509]
We introduce a dual-path token lifting for domain shift correction in test time adaptation.
We then perform dual-path lifting with interleaved token prediction and update between the path of domain shift tokens and the path of class tokens.
Experimental results on the benchmark datasets demonstrate that our proposed method significantly improves the online fully test-time domain adaptation performance.
arXiv Detail & Related papers (2024-08-26T02:33:47Z) - Just Shift It: Test-Time Prototype Shifting for Zero-Shot Generalization with Vision-Language Models [19.683461002518147]
Test-Time Prototype Shifting (TPS) is a pioneering approach designed to adapt vision-language models to test datasets using unlabeled test inputs.
TPS not only facilitates optimization-free prototype reuse for subsequent predictions but also enables seamless integration with current advancements in prompt engineering.
A notable aspect of our framework is its significantly reduced memory and computational demands when compared to conventional text-prompt tuning methods.
arXiv Detail & Related papers (2024-03-19T17:54:34Z) - Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
We present AdaSyn, a framework for domain adaptive synapse detection with weak point annotations.
In the WASPSYN challenge at I SBI 2023, our method ranks the 1st place.
arXiv Detail & Related papers (2023-08-31T05:05:53Z) - Condition-Invariant Semantic Segmentation [77.10045325743644]
We implement Condition-Invariant Semantic (CISS) on the current state-of-the-art domain adaptation architecture.
Our method achieves the second-best performance on the normal-to-adverse Cityscapes$to$ACDC benchmark.
CISS is shown to generalize well to domains unseen during training, such as BDD100K-night and ACDC-night.
arXiv Detail & Related papers (2023-05-27T03:05:07Z) - Explaining Cross-Domain Recognition with Interpretable Deep Classifier [100.63114424262234]
Interpretable Deep (IDC) learns the nearest source samples of a target sample as evidence upon which the classifier makes the decision.
Our IDC leads to a more explainable model with almost no accuracy degradation and effectively calibrates classification for optimum reject options.
arXiv Detail & Related papers (2022-11-15T15:58:56Z) - Zero-Shot Domain Adaptation with a Physics Prior [39.424545456601074]
A traditional domain adaptation setting is to train on one domain and adapt to the target domain by exploiting unlabeled data samples from the test set.
We exploit a visual inductive prior derived from physics-based reflection models for domain adaptation.
We show that the color invariant layer reduces the day-night distribution shift in feature map activations throughout the network.
arXiv Detail & Related papers (2021-08-11T10:28:56Z) - Exploring Sequence Feature Alignment for Domain Adaptive Detection
Transformers [141.70707071815653]
We propose a novel Sequence Feature Alignment (SFA) method that is specially designed for the adaptation of detection transformers.
SFA consists of a domain query-based feature alignment (DQFA) module and a token-wise feature alignment (TDA) module.
Experiments on three challenging benchmarks show that SFA outperforms state-of-the-art domain adaptive object detection methods.
arXiv Detail & Related papers (2021-07-27T07:17:12Z) - Self-Supervised Domain Adaptation with Consistency Training [0.2462953128215087]
We consider the problem of unsupervised domain adaptation for image classification.
We create a self-supervised pretext task by augmenting the unlabeled data with a certain type of transformation.
We force the representation of the augmented data to be consistent with that of the original data.
arXiv Detail & Related papers (2020-10-15T06:03:47Z) - Self-Challenging Improves Cross-Domain Generalization [81.99554996975372]
Convolutional Neural Networks (CNN) conduct image classification by activating dominant features that correlated with labels.
We introduce a simple training, Self-Challenging Representation (RSC), that significantly improves the generalization of CNN to the out-of-domain data.
RSC iteratively challenges the dominant features activated on the training data, and forces the network to activate remaining features that correlates with labels.
arXiv Detail & Related papers (2020-07-05T21:42:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.