TabReD: A Benchmark of Tabular Machine Learning in-the-Wild
- URL: http://arxiv.org/abs/2406.19380v2
- Date: Mon, 1 Jul 2024 23:01:33 GMT
- Title: TabReD: A Benchmark of Tabular Machine Learning in-the-Wild
- Authors: Ivan Rubachev, Nikolay Kartashev, Yury Gorishniy, Artem Babenko,
- Abstract summary: We show that industry-grade datasets are underrepresented in academic benchmarks for machine learning.
We introduce TabReD, a collection of eight industry-grade datasets covering a wide range of domains.
We show that evaluation on time-based data splits leads to different methods ranking, compared to evaluation on random splits more common in academic benchmarks.
- Score: 30.922069185335246
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Benchmarks that closely reflect downstream application scenarios are essential for the streamlined adoption of new research in tabular machine learning (ML). In this work, we examine existing tabular benchmarks and find two common characteristics of industry-grade tabular data that are underrepresented in the datasets available to the academic community. First, tabular data often changes over time in real-world deployment scenarios. This impacts model performance and requires time-based train and test splits for correct model evaluation. Yet, existing academic tabular datasets often lack timestamp metadata to enable such evaluation. Second, a considerable portion of datasets in production settings stem from extensive data acquisition and feature engineering pipelines. For each specific dataset, this can have a different impact on the absolute and relative number of predictive, uninformative, and correlated features, which in turn can affect model selection. To fill the aforementioned gaps in academic benchmarks, we introduce TabReD -- a collection of eight industry-grade tabular datasets covering a wide range of domains from finance to food delivery services. We assess a large number of tabular ML models in the feature-rich, temporally-evolving data setting facilitated by TabReD. We demonstrate that evaluation on time-based data splits leads to different methods ranking, compared to evaluation on random splits more common in academic benchmarks. Furthermore, on the TabReD datasets, MLP-like architectures and GBDT show the best results, while more sophisticated DL models are yet to prove their effectiveness.
Related papers
- Universal Embeddings of Tabular Data [0.0]
Tabular data in relational databases represents a significant portion of industrial data.<n>We present a novel framework for generating universal, i.e., task-independent embeddings of tabular data for performing downstream tasks without predefined targets.
arXiv Detail & Related papers (2025-07-08T11:45:29Z) - Drift-Resilient TabPFN: In-Context Learning Temporal Distribution Shifts on Tabular Data [39.40116554523575]
We present Drift-Resilient TabPFN, a fresh approach based on In-Context Learning with a Prior-Data Fitted Network.
It learns to approximate Bayesian inference on synthetic datasets drawn from a prior.
It improves accuracy from 0.688 to 0.744 and ROC AUC from 0.786 to 0.832 while maintaining stronger calibration.
arXiv Detail & Related papers (2024-11-15T23:49:23Z) - Revisiting Nearest Neighbor for Tabular Data: A Deep Tabular Baseline Two Decades Later [76.66498833720411]
We introduce a differentiable version of $K$-nearest neighbors (KNN) originally designed to learn a linear projection to capture semantic similarities between instances.
Surprisingly, our implementation of NCA using SGD and without dimensionality reduction already achieves decent performance on tabular data.
We conclude our paper by analyzing the factors behind these improvements, including loss functions, prediction strategies, and deep architectures.
arXiv Detail & Related papers (2024-07-03T16:38:57Z) - A Data-Centric Perspective on Evaluating Machine Learning Models for Tabular Data [9.57464542357693]
This paper demonstrates that model-centric evaluations are biased, as real-world modeling pipelines often require dataset-specific preprocessing and feature engineering.
We select 10 relevant datasets from Kaggle competitions and implement expert-level preprocessing pipelines for each dataset.
After dataset-specific feature engineering, model rankings change considerably, performance differences decrease, and the importance of model selection reduces.
arXiv Detail & Related papers (2024-07-02T09:54:39Z) - A Closer Look at Deep Learning on Tabular Data [52.50778536274327]
Tabular data is prevalent across various domains in machine learning.
Deep Neural Network (DNN)-based methods have shown promising performance comparable to tree-based ones.
arXiv Detail & Related papers (2024-07-01T04:24:07Z) - TabMDA: Tabular Manifold Data Augmentation for Any Classifier using Transformers with In-context Subsetting [23.461204546005387]
TabMDA is a novel method for manifold data augmentation on tabular data.
It exploits a pre-trained in-context model, such as TabPFN, to map the data into an embedding space.
We evaluate TabMDA on five standard classifiers and observe significant performance improvements across various datasets.
arXiv Detail & Related papers (2024-06-03T21:51:13Z) - 4DBInfer: A 4D Benchmarking Toolbox for Graph-Centric Predictive Modeling on Relational DBs [67.47600679176963]
RDBs store vast amounts of rich, informative data spread across interconnected tables.
The progress of predictive machine learning models falls behind advances in other domains such as computer vision or natural language processing.
We explore a class of baseline models predicated on converting multi-table datasets into graphs.
We assemble a diverse collection of large-scale RDB datasets and (ii) coincident predictive tasks.
arXiv Detail & Related papers (2024-04-28T15:04:54Z) - Training-Free Generalization on Heterogeneous Tabular Data via
Meta-Representation [67.30538142519067]
We propose Tabular data Pre-Training via Meta-representation (TabPTM)
A deep neural network is then trained to associate these meta-representations with dataset-specific classification confidences.
Experiments validate that TabPTM achieves promising performance in new datasets, even under few-shot scenarios.
arXiv Detail & Related papers (2023-10-31T18:03:54Z) - TabuLa: Harnessing Language Models for Tabular Data Synthesis [4.539846270369207]
Tabula is a tabular data synthesizer that leverages the structure of large language models (LLMs)
Unlike state-of-the-art (SOTA) LLMs, Tabula discards the pre-trained weights originally designed for natural language tasks.
experiments show that Tabula achieves superior synthetic data utility compared to current SOTA methods.
arXiv Detail & Related papers (2023-10-19T13:50:56Z) - Leveraging Data Recasting to Enhance Tabular Reasoning [21.970920861791015]
Prior work has mostly relied on two data generation strategies.
The first is human annotation, which yields linguistically diverse data but is difficult to scale.
The second category for creation is synthetic generation, which is scalable and cost effective but lacks inventiveness.
arXiv Detail & Related papers (2022-11-23T00:04:57Z) - A Large Scale Search Dataset for Unbiased Learning to Rank [51.97967284268577]
We introduce the Baidu-ULTR dataset for unbiased learning to rank.
It involves randomly sampled 1.2 billion searching sessions and 7,008 expert annotated queries.
It provides: (1) the original semantic feature and a pre-trained language model for easy usage; (2) sufficient display information such as position, displayed height, and displayed abstract; and (3) rich user feedback on search result pages (SERPs) like dwelling time.
arXiv Detail & Related papers (2022-07-07T02:37:25Z) - A Closer Look at Debiased Temporal Sentence Grounding in Videos:
Dataset, Metric, and Approach [53.727460222955266]
Temporal Sentence Grounding in Videos (TSGV) aims to ground a natural language sentence in an untrimmed video.
Recent studies have found that current benchmark datasets may have obvious moment annotation biases.
We introduce a new evaluation metric "dR@n,IoU@m" that discounts the basic recall scores to alleviate the inflating evaluation caused by biased datasets.
arXiv Detail & Related papers (2022-03-10T08:58:18Z) - SubTab: Subsetting Features of Tabular Data for Self-Supervised
Representation Learning [5.5616364225463055]
We introduce a new framework, Subsetting features of Tabular data (SubTab)
In this paper, we introduce a new framework, Subsetting features of Tabular data (SubTab)
We argue that reconstructing the data from the subset of its features rather than its corrupted version in an autoencoder setting can better capture its underlying representation.
arXiv Detail & Related papers (2021-10-08T20:11:09Z) - BREEDS: Benchmarks for Subpopulation Shift [98.90314444545204]
We develop a methodology for assessing the robustness of models to subpopulation shift.
We leverage the class structure underlying existing datasets to control the data subpopulations that comprise the training and test distributions.
Applying this methodology to the ImageNet dataset, we create a suite of subpopulation shift benchmarks of varying granularity.
arXiv Detail & Related papers (2020-08-11T17:04:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.