TabReD: Analyzing Pitfalls and Filling the Gaps in Tabular Deep Learning Benchmarks
- URL: http://arxiv.org/abs/2406.19380v4
- Date: Thu, 24 Oct 2024 17:54:37 GMT
- Title: TabReD: Analyzing Pitfalls and Filling the Gaps in Tabular Deep Learning Benchmarks
- Authors: Ivan Rubachev, Nikolay Kartashev, Yury Gorishniy, Artem Babenko,
- Abstract summary: We find two common characteristics of tabular data in typical industrial applications that are underrepresented in the datasets usually used for evaluation in the literature.
A considerable portion of datasets in production settings stem from extensive data acquisition and feature engineering pipelines.
This can have an impact on the absolute and relative number of predictive, uninformative, and correlated features compared to academic datasets.
- Score: 30.922069185335246
- License:
- Abstract: Advances in machine learning research drive progress in real-world applications. To ensure this progress, it is important to understand the potential pitfalls on the way from a novel method's success on academic benchmarks to its practical deployment. In this work, we analyze existing tabular benchmarks and find two common characteristics of tabular data in typical industrial applications that are underrepresented in the datasets usually used for evaluation in the literature. First, in real-world deployment scenarios, distribution of data often changes over time. To account for this distribution drift, time-based train/test splits should be used in evaluation. However, popular tabular datasets often lack timestamp metadata to enable such evaluation. Second, a considerable portion of datasets in production settings stem from extensive data acquisition and feature engineering pipelines. This can have an impact on the absolute and relative number of predictive, uninformative, and correlated features compared to academic datasets. In this work, we aim to understand how recent research advances in tabular deep learning transfer to these underrepresented conditions. To this end, we introduce TabReD -- a collection of eight industry-grade tabular datasets. We reassess a large number of tabular ML models and techniques on TabReD. We demonstrate that evaluation on time-based data splits leads to different methods ranking, compared to evaluation on random splits, which are common in current benchmarks. Furthermore, simple MLP-like architectures and GBDT show the best results on the TabReD datasets, while other methods are less effective in the new setting.
Related papers
- Drift-Resilient TabPFN: In-Context Learning Temporal Distribution Shifts on Tabular Data [39.40116554523575]
We present Drift-Resilient TabPFN, a fresh approach based on In-Context Learning with a Prior-Data Fitted Network.
It learns to approximate Bayesian inference on synthetic datasets drawn from a prior.
It improves accuracy from 0.688 to 0.744 and ROC AUC from 0.786 to 0.832 while maintaining stronger calibration.
arXiv Detail & Related papers (2024-11-15T23:49:23Z) - A Data-Centric Perspective on Evaluating Machine Learning Models for Tabular Data [9.57464542357693]
This paper demonstrates that model-centric evaluations are biased, as real-world modeling pipelines often require dataset-specific preprocessing and feature engineering.
We select 10 relevant datasets from Kaggle competitions and implement expert-level preprocessing pipelines for each dataset.
After dataset-specific feature engineering, model rankings change considerably, performance differences decrease, and the importance of model selection reduces.
arXiv Detail & Related papers (2024-07-02T09:54:39Z) - A Closer Look at Deep Learning on Tabular Data [52.50778536274327]
Tabular data is prevalent across various domains in machine learning.
Deep Neural Network (DNN)-based methods have shown promising performance comparable to tree-based ones.
arXiv Detail & Related papers (2024-07-01T04:24:07Z) - TabMDA: Tabular Manifold Data Augmentation for Any Classifier using Transformers with In-context Subsetting [23.461204546005387]
TabMDA is a novel method for manifold data augmentation on tabular data.
It exploits a pre-trained in-context model, such as TabPFN, to map the data into an embedding space.
We evaluate TabMDA on five standard classifiers and observe significant performance improvements across various datasets.
arXiv Detail & Related papers (2024-06-03T21:51:13Z) - 4DBInfer: A 4D Benchmarking Toolbox for Graph-Centric Predictive Modeling on Relational DBs [67.47600679176963]
RDBs store vast amounts of rich, informative data spread across interconnected tables.
The progress of predictive machine learning models falls behind advances in other domains such as computer vision or natural language processing.
We explore a class of baseline models predicated on converting multi-table datasets into graphs.
We assemble a diverse collection of large-scale RDB datasets and (ii) coincident predictive tasks.
arXiv Detail & Related papers (2024-04-28T15:04:54Z) - Training-Free Generalization on Heterogeneous Tabular Data via
Meta-Representation [67.30538142519067]
We propose Tabular data Pre-Training via Meta-representation (TabPTM)
A deep neural network is then trained to associate these meta-representations with dataset-specific classification confidences.
Experiments validate that TabPTM achieves promising performance in new datasets, even under few-shot scenarios.
arXiv Detail & Related papers (2023-10-31T18:03:54Z) - Leveraging Data Recasting to Enhance Tabular Reasoning [21.970920861791015]
Prior work has mostly relied on two data generation strategies.
The first is human annotation, which yields linguistically diverse data but is difficult to scale.
The second category for creation is synthetic generation, which is scalable and cost effective but lacks inventiveness.
arXiv Detail & Related papers (2022-11-23T00:04:57Z) - A Large Scale Search Dataset for Unbiased Learning to Rank [51.97967284268577]
We introduce the Baidu-ULTR dataset for unbiased learning to rank.
It involves randomly sampled 1.2 billion searching sessions and 7,008 expert annotated queries.
It provides: (1) the original semantic feature and a pre-trained language model for easy usage; (2) sufficient display information such as position, displayed height, and displayed abstract; and (3) rich user feedback on search result pages (SERPs) like dwelling time.
arXiv Detail & Related papers (2022-07-07T02:37:25Z) - A Closer Look at Debiased Temporal Sentence Grounding in Videos:
Dataset, Metric, and Approach [53.727460222955266]
Temporal Sentence Grounding in Videos (TSGV) aims to ground a natural language sentence in an untrimmed video.
Recent studies have found that current benchmark datasets may have obvious moment annotation biases.
We introduce a new evaluation metric "dR@n,IoU@m" that discounts the basic recall scores to alleviate the inflating evaluation caused by biased datasets.
arXiv Detail & Related papers (2022-03-10T08:58:18Z) - SubTab: Subsetting Features of Tabular Data for Self-Supervised
Representation Learning [5.5616364225463055]
We introduce a new framework, Subsetting features of Tabular data (SubTab)
In this paper, we introduce a new framework, Subsetting features of Tabular data (SubTab)
We argue that reconstructing the data from the subset of its features rather than its corrupted version in an autoencoder setting can better capture its underlying representation.
arXiv Detail & Related papers (2021-10-08T20:11:09Z) - BREEDS: Benchmarks for Subpopulation Shift [98.90314444545204]
We develop a methodology for assessing the robustness of models to subpopulation shift.
We leverage the class structure underlying existing datasets to control the data subpopulations that comprise the training and test distributions.
Applying this methodology to the ImageNet dataset, we create a suite of subpopulation shift benchmarks of varying granularity.
arXiv Detail & Related papers (2020-08-11T17:04:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.