Inclusivity in Large Language Models: Personality Traits and Gender Bias in Scientific Abstracts
- URL: http://arxiv.org/abs/2406.19497v1
- Date: Thu, 27 Jun 2024 19:26:11 GMT
- Title: Inclusivity in Large Language Models: Personality Traits and Gender Bias in Scientific Abstracts
- Authors: Naseela Pervez, Alexander J. Titus,
- Abstract summary: We evaluate three large language models (LLMs) for their alignment with human narrative styles and potential gender biases.
Our findings indicate that, while these models generally produce text closely resembling human authored content, variations in stylistic features suggest significant gender biases.
- Score: 49.97673761305336
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) are increasingly utilized to assist in scientific and academic writing, helping authors enhance the coherence of their articles. Previous studies have highlighted stereotypes and biases present in LLM outputs, emphasizing the need to evaluate these models for their alignment with human narrative styles and potential gender biases. In this study, we assess the alignment of three prominent LLMs - Claude 3 Opus, Mistral AI Large, and Gemini 1.5 Flash - by analyzing their performance on benchmark text-generation tasks for scientific abstracts. We employ the Linguistic Inquiry and Word Count (LIWC) framework to extract lexical, psychological, and social features from the generated texts. Our findings indicate that, while these models generally produce text closely resembling human authored content, variations in stylistic features suggest significant gender biases. This research highlights the importance of developing LLMs that maintain a diversity of writing styles to promote inclusivity in academic discourse.
Related papers
- MirrorStories: Reflecting Diversity through Personalized Narrative Generation with Large Language Models [5.397565689903148]
This study explores the effectiveness of Large Language Models (LLMs) in creating personalized "mirror stories"
MirrorStories is a corpus of 1,500 personalized short stories generated by integrating elements such as name, gender, age, ethnicity, reader interest, and story moral.
arXiv Detail & Related papers (2024-09-20T22:43:13Z) - White Men Lead, Black Women Help? Benchmarking Language Agency Social Biases in LLMs [58.27353205269664]
Social biases can manifest in language agency.
We introduce the novel Language Agency Bias Evaluation benchmark.
We unveil language agency social biases in 3 recent Large Language Model (LLM)-generated content.
arXiv Detail & Related papers (2024-04-16T12:27:54Z) - Secret Keepers: The Impact of LLMs on Linguistic Markers of Personal Traits [6.886654996060662]
We investigate the impact of Large Language Models (LLMs) on the linguistic markers of demographic and psychological traits.
Our findings indicate that although the use of LLMs slightly reduces the predictive power of linguistic patterns over authors' personal traits, the significant changes are infrequent.
arXiv Detail & Related papers (2024-03-30T06:49:17Z) - Multilingual Text-to-Image Generation Magnifies Gender Stereotypes and Prompt Engineering May Not Help You [64.74707085021858]
We show that multilingual models suffer from significant gender biases just as monolingual models do.
We propose a novel benchmark, MAGBIG, intended to foster research on gender bias in multilingual models.
Our results show that not only do models exhibit strong gender biases but they also behave differently across languages.
arXiv Detail & Related papers (2024-01-29T12:02:28Z) - An Interdisciplinary Outlook on Large Language Models for Scientific
Research [3.4108358650013573]
We describe the capabilities and constraints of Large Language Models (LLMs) within disparate academic disciplines, aiming to delineate their strengths and limitations with precision.
We examine how LLMs augment scientific inquiry, offering concrete examples such as accelerating literature review by summarizing vast numbers of publications.
We articulate the challenges LLMs face, including their reliance on extensive and sometimes biased datasets, and the potential ethical dilemmas stemming from their use.
arXiv Detail & Related papers (2023-11-03T19:41:09Z) - "Kelly is a Warm Person, Joseph is a Role Model": Gender Biases in
LLM-Generated Reference Letters [97.11173801187816]
Large Language Models (LLMs) have recently emerged as an effective tool to assist individuals in writing various types of content.
This paper critically examines gender biases in LLM-generated reference letters.
arXiv Detail & Related papers (2023-10-13T16:12:57Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
We present a comprehensive survey of bias evaluation and mitigation techniques for large language models (LLMs)
We first consolidate, formalize, and expand notions of social bias and fairness in natural language processing.
We then unify the literature by proposing three intuitive, two for bias evaluation, and one for mitigation.
arXiv Detail & Related papers (2023-09-02T00:32:55Z) - Teach LLMs to Personalize -- An Approach inspired by Writing Education [37.198598706659524]
We propose a general approach for personalized text generation using large language models (LLMs)
Inspired by the practice of writing education, we develop a multistage and multitask framework to teach LLMs for personalized generation.
arXiv Detail & Related papers (2023-08-15T18:06:23Z) - Unveiling Gender Bias in Terms of Profession Across LLMs: Analyzing and
Addressing Sociological Implications [0.0]
The study examines existing research on gender bias in AI language models and identifies gaps in the current knowledge.
The findings shed light on gendered word associations, language usage, and biased narratives present in the outputs of Large Language Models.
The paper presents strategies for reducing gender bias in LLMs, including algorithmic approaches and data augmentation techniques.
arXiv Detail & Related papers (2023-07-18T11:38:45Z) - The Next Chapter: A Study of Large Language Models in Storytelling [51.338324023617034]
The application of prompt-based learning with large language models (LLMs) has exhibited remarkable performance in diverse natural language processing (NLP) tasks.
This paper conducts a comprehensive investigation, utilizing both automatic and human evaluation, to compare the story generation capacity of LLMs with recent models.
The results demonstrate that LLMs generate stories of significantly higher quality compared to other story generation models.
arXiv Detail & Related papers (2023-01-24T02:44:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.