Extract More from Less: Efficient Fine-Grained Visual Recognition in Low-Data Regimes
- URL: http://arxiv.org/abs/2406.19814v1
- Date: Fri, 28 Jun 2024 10:45:25 GMT
- Title: Extract More from Less: Efficient Fine-Grained Visual Recognition in Low-Data Regimes
- Authors: Dmitry Demidov, Abduragim Shtanchaev, Mihail Mihaylov, Mohammad Almansoori,
- Abstract summary: We present a novel framework, called AD-Net, aiming to enhance deep neural network performance on this challenge.
Specifically, our approach is designed to refine learned features through self-distillation on augmented samples, mitigating harmful overfitting.
With the smallest data available, our framework shows an outstanding relative accuracy increase of up to 45 %.
- Score: 0.22499166814992438
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The emerging task of fine-grained image classification in low-data regimes assumes the presence of low inter-class variance and large intra-class variation along with a highly limited amount of training samples per class. However, traditional ways of separately dealing with fine-grained categorisation and extremely scarce data may be inefficient under both these harsh conditions presented together. In this paper, we present a novel framework, called AD-Net, aiming to enhance deep neural network performance on this challenge by leveraging the power of Augmentation and Distillation techniques. Specifically, our approach is designed to refine learned features through self-distillation on augmented samples, mitigating harmful overfitting. We conduct comprehensive experiments on popular fine-grained image classification benchmarks where our AD-Net demonstrates consistent improvement over traditional fine-tuning and state-of-the-art low-data techniques. Remarkably, with the smallest data available, our framework shows an outstanding relative accuracy increase of up to 45 % compared to standard ResNet-50 and up to 27 % compared to the closest SOTA runner-up. We emphasise that our approach is practically architecture-independent and adds zero extra cost at inference time. Additionally, we provide an extensive study on the impact of every framework's component, highlighting the importance of each in achieving optimal performance. Source code and trained models are publicly available at github.com/demidovd98/fgic_lowd.
Related papers
- DRoP: Distributionally Robust Pruning [11.930434318557156]
We conduct the first systematic study of the impact of data pruning on classification bias of trained models.
We propose DRoP, a distributionally robust approach to pruning and empirically demonstrate its performance on standard computer vision benchmarks.
arXiv Detail & Related papers (2024-04-08T14:55:35Z) - Latent Enhancing AutoEncoder for Occluded Image Classification [2.6217304977339473]
We introduce LEARN: Latent Enhancing feAture Reconstruction Network.
An auto-encoder based network that can be incorporated into the classification model before its head.
On the OccludedPASCAL3D+ dataset, the proposed LEARN outperforms standard classification models.
arXiv Detail & Related papers (2024-02-10T12:22:31Z) - Understanding the Detrimental Class-level Effects of Data Augmentation [63.1733767714073]
achieving optimal average accuracy comes at the cost of significantly hurting individual class accuracy by as much as 20% on ImageNet.
We present a framework for understanding how DA interacts with class-level learning dynamics.
We show that simple class-conditional augmentation strategies improve performance on the negatively affected classes.
arXiv Detail & Related papers (2023-12-07T18:37:43Z) - Feedback-guided Data Synthesis for Imbalanced Classification [10.836265321046561]
We introduce a framework for augmenting static datasets with useful synthetic samples.
We find that the samples must be close to the support of the real data of the task at hand, and be sufficiently diverse.
On ImageNet-LT, we achieve state-of-the-art results, with over 4 percent improvement on underrepresented classes.
arXiv Detail & Related papers (2023-09-29T21:47:57Z) - Fine-grained Recognition with Learnable Semantic Data Augmentation [68.48892326854494]
Fine-grained image recognition is a longstanding computer vision challenge.
We propose diversifying the training data at the feature-level to alleviate the discriminative region loss problem.
Our method significantly improves the generalization performance on several popular classification networks.
arXiv Detail & Related papers (2023-09-01T11:15:50Z) - Accurate Neural Network Pruning Requires Rethinking Sparse Optimization [87.90654868505518]
We show the impact of high sparsity on model training using the standard computer vision and natural language processing sparsity benchmarks.
We provide new approaches for mitigating this issue for both sparse pre-training of vision models and sparse fine-tuning of language models.
arXiv Detail & Related papers (2023-08-03T21:49:14Z) - Revisiting Consistency Regularization for Semi-Supervised Learning [80.28461584135967]
We propose an improved consistency regularization framework by a simple yet effective technique, FeatDistLoss.
Experimental results show that our model defines a new state of the art for various datasets and settings.
arXiv Detail & Related papers (2021-12-10T20:46:13Z) - Ortho-Shot: Low Displacement Rank Regularization with Data Augmentation
for Few-Shot Learning [23.465747123791772]
In few-shot classification, the primary goal is to learn representations that generalize well for novel classes.
We propose an efficient low displacement rank (LDR) regularization strategy termed Ortho-Shot.
arXiv Detail & Related papers (2021-10-18T14:58:36Z) - Enhancing the Generalization for Intent Classification and Out-of-Domain
Detection in SLU [70.44344060176952]
Intent classification is a major task in spoken language understanding (SLU)
Recent works have shown that using extra data and labels can improve the OOD detection performance.
This paper proposes to train a model with only IND data while supporting both IND intent classification and OOD detection.
arXiv Detail & Related papers (2021-06-28T08:27:38Z) - LaplaceNet: A Hybrid Energy-Neural Model for Deep Semi-Supervised
Classification [0.0]
Recent developments in deep semi-supervised classification have reached unprecedented performance.
We propose a new framework, LaplaceNet, for deep semi-supervised classification that has a greatly reduced model complexity.
Our model outperforms state-of-the-art methods for deep semi-supervised classification, over several benchmark datasets.
arXiv Detail & Related papers (2021-06-08T17:09:28Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.