Paraphrase Types Elicit Prompt Engineering Capabilities
- URL: http://arxiv.org/abs/2406.19898v1
- Date: Fri, 28 Jun 2024 13:06:31 GMT
- Title: Paraphrase Types Elicit Prompt Engineering Capabilities
- Authors: Jan Philip Wahle, Terry Ruas, Yang Xu, Bela Gipp,
- Abstract summary: This study systematically and empirically evaluates which linguistic features influence models through paraphrase types.
We measure behavioral changes for five models across 120 tasks and six families of paraphrases.
Our results show a potential for language models to improve tasks when their prompts are adapted in specific paraphrase types.
- Score: 9.311064293678154
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Much of the success of modern language models depends on finding a suitable prompt to instruct the model. Until now, it has been largely unknown how variations in the linguistic expression of prompts affect these models. This study systematically and empirically evaluates which linguistic features influence models through paraphrase types, i.e., different linguistic changes at particular positions. We measure behavioral changes for five models across 120 tasks and six families of paraphrases (i.e., morphology, syntax, lexicon, lexico-syntax, discourse, and others). We also control for other prompt engineering factors (e.g., prompt length, lexical diversity, and proximity to training data). Our results show a potential for language models to improve tasks when their prompts are adapted in specific paraphrase types (e.g., 6.7% median gain in Mixtral 8x7B; 5.5% in LLaMA 3 8B). In particular, changes in morphology and lexicon, i.e., the vocabulary used, showed promise in improving prompts. These findings contribute to developing more robust language models capable of handling variability in linguistic expression.
Related papers
- IndicSentEval: How Effectively do Multilingual Transformer Models encode Linguistic Properties for Indic Languages? [14.77467551053299]
Transformer-based models have revolutionized the field of natural language processing.
How robust are these models in encoding linguistic properties when faced with perturbations in the input text?
In this paper, we investigate similar questions regarding encoding capability and robustness for 8 linguistic properties across 13 different perturbations in 6 Indic languages.
arXiv Detail & Related papers (2024-10-03T15:50:08Z) - Talking the Talk Does Not Entail Walking the Walk: On the Limits of Large Language Models in Lexical Entailment Recognition [3.8623569699070357]
This work investigates the capabilities of eight Large Language Models in recognizing lexical entailment relations among verbs.
Our findings unveil that the models can tackle the lexical entailment recognition task with moderately good performance.
arXiv Detail & Related papers (2024-06-21T06:30:16Z) - We're Calling an Intervention: Exploring the Fundamental Hurdles in Adapting Language Models to Nonstandard Text [8.956635443376527]
We present a suite of experiments that allow us to understand the underlying challenges of language model adaptation to nonstandard text.
We do so by designing interventions that approximate several types of linguistic variation and their interactions with existing biases of language models.
Applying our interventions during language model adaptation with varying size and nature of training data, we gain important insights into when knowledge transfer can be successful.
arXiv Detail & Related papers (2024-04-10T18:56:53Z) - Tokenization Impacts Multilingual Language Modeling: Assessing
Vocabulary Allocation and Overlap Across Languages [3.716965622352967]
We propose new criteria to evaluate the quality of lexical representation and vocabulary overlap observed in sub-word tokenizers.
Our findings show that the overlap of vocabulary across languages can be actually detrimental to certain downstream tasks.
arXiv Detail & Related papers (2023-05-26T18:06:49Z) - Transparency Helps Reveal When Language Models Learn Meaning [71.96920839263457]
Our systematic experiments with synthetic data reveal that, with languages where all expressions have context-independent denotations, both autoregressive and masked language models learn to emulate semantic relations between expressions.
Turning to natural language, our experiments with a specific phenomenon -- referential opacity -- add to the growing body of evidence that current language models do not well-represent natural language semantics.
arXiv Detail & Related papers (2022-10-14T02:35:19Z) - Testing the Ability of Language Models to Interpret Figurative Language [69.59943454934799]
Figurative and metaphorical language are commonplace in discourse.
It remains an open question to what extent modern language models can interpret nonliteral phrases.
We introduce Fig-QA, a Winograd-style nonliteral language understanding task.
arXiv Detail & Related papers (2022-04-26T23:42:22Z) - Do Not Fire the Linguist: Grammatical Profiles Help Language Models
Detect Semantic Change [6.7485485663645495]
We first compare the performance of grammatical profiles against that of a multilingual neural language model (XLM-R) on 10 datasets, covering 7 languages.
Our results show that ensembling grammatical profiles with XLM-R improves semantic change detection performance for most datasets and languages.
arXiv Detail & Related papers (2022-04-12T11:20:42Z) - Specializing Multilingual Language Models: An Empirical Study [50.7526245872855]
Contextualized word representations from pretrained multilingual language models have become the de facto standard for addressing natural language tasks.
For languages rarely or never seen by these models, directly using such models often results in suboptimal representation or use of data.
arXiv Detail & Related papers (2021-06-16T18:13:55Z) - Revisiting Language Encoding in Learning Multilingual Representations [70.01772581545103]
We propose a new approach called Cross-lingual Language Projection (XLP) to replace language embedding.
XLP projects the word embeddings into language-specific semantic space, and then the projected embeddings will be fed into the Transformer model.
Experiments show that XLP can freely and significantly boost the model performance on extensive multilingual benchmark datasets.
arXiv Detail & Related papers (2021-02-16T18:47:10Z) - Grounded Compositional Outputs for Adaptive Language Modeling [59.02706635250856]
A language model's vocabulary$-$typically selected before training and permanently fixed later$-$affects its size.
We propose a fully compositional output embedding layer for language models.
To our knowledge, the result is the first word-level language model with a size that does not depend on the training vocabulary.
arXiv Detail & Related papers (2020-09-24T07:21:14Z) - On the Importance of Word Order Information in Cross-lingual Sequence
Labeling [80.65425412067464]
Cross-lingual models that fit into the word order of the source language might fail to handle target languages.
We investigate whether making models insensitive to the word order of the source language can improve the adaptation performance in target languages.
arXiv Detail & Related papers (2020-01-30T03:35:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.