Runtime Instrumentation for Reactive Components (Extended Version)
- URL: http://arxiv.org/abs/2406.19904v1
- Date: Fri, 28 Jun 2024 13:18:04 GMT
- Title: Runtime Instrumentation for Reactive Components (Extended Version)
- Authors: Luca Aceto, Duncan Paul Attard, Adrian Francalanza, Anna Ingólfsdóttir,
- Abstract summary: Reactive software calls for instrumentation methods that uphold the reactive attributes of systems.
This paper presents RIARC, a novel decentralised instrumentation algorithm for outline monitors meeting these two demands.
RIARC overcomes these challenges using a next-hop IP routing approach to rearrange and report events soundly to monitors.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reactive software calls for instrumentation methods that uphold the reactive attributes of systems. Runtime verification imposes another demand on the instrumentation, namely that the trace event sequences it reports to monitors are sound -- that is, they reflect actual executions of the system under scrutiny. This paper presents RIARC, a novel decentralised instrumentation algorithm for outline monitors meeting these two demands. The asynchronous setting of reactive software complicates the instrumentation due to potential trace event loss or reordering. RIARC overcomes these challenges using a next-hop IP routing approach to rearrange and report events soundly to monitors. RIARC is validated in two ways. We subject its corresponding implementation to rigorous systematic testing to confirm its correctness. In addition, we assess this implementation via extensive empirical experiments, subjecting it to large realistic workloads to ascertain its reactiveness. Our results show that RIARC optimises its memory and scheduler usage to maintain latency feasible for soft real-time applications. We also compare RIARC to inline and centralised monitoring, revealing that it induces comparable latency to inline monitoring in moderate concurrency settings, where software performs long-running, computationally-intensive tasks, such as in Big Data stream processing.
Related papers
- PARIS: A Practical, Adaptive Trace-Fetching and Real-Time Malicious Behavior Detection System [6.068607290592521]
We propose adaptive trace fetching, lightweight, real-time malicious behavior detection system.
Specifically, we monitor malicious behavior with Event Tracing for Windows (ETW) and learn to selectively collect maliciousness-related APIs or call stacks.
As a result, we can monitor a wider range of APIs and detect more intricate attack behavior.
arXiv Detail & Related papers (2024-11-02T14:52:04Z) - ORCHID: Streaming Threat Detection over Versioned Provenance Graphs [11.783370157959968]
We present ORCHID, a novel Prov-IDS that performs fine-grained detection of process-level threats over a real time event stream.
ORCHID takes advantage of the unique immutable properties of a versioned provenance graphs to iteratively embed the entire graph in a sequential RNN model.
We evaluate ORCHID on four public datasets, including DARPA TC, to show that ORCHID can provide competitive classification performance.
arXiv Detail & Related papers (2024-08-23T19:44:40Z) - A Thorough Performance Benchmarking on Lightweight Embedding-based Recommender Systems [67.52782366565658]
State-of-the-art recommender systems (RSs) depend on categorical features, which ecoded by embedding vectors, resulting in excessively large embedding tables.
Despite the prosperity of lightweight embedding-based RSs, a wide diversity is seen in evaluation protocols.
This study investigates various LERS' performance, efficiency, and cross-task transferability via a thorough benchmarking process.
arXiv Detail & Related papers (2024-06-25T07:45:00Z) - Unified Active Retrieval for Retrieval Augmented Generation [69.63003043712696]
In Retrieval-Augmented Generation (RAG), retrieval is not always helpful and applying it to every instruction is sub-optimal.
Existing active retrieval methods face two challenges: 1.
They usually rely on a single criterion, which struggles with handling various types of instructions.
They depend on specialized and highly differentiated procedures, and thus combining them makes the RAG system more complicated.
arXiv Detail & Related papers (2024-06-18T12:09:02Z) - Sound Concurrent Traces for Online Monitoring Technical Report [0.0]
concurrent programs typically rely on collecting traces to abstract program executions.
We first define the notion of when a trace is representative of a concurrent execution.
We then present a non-blocking vector clock algorithm to collect sound concurrent traces on the fly.
arXiv Detail & Related papers (2024-02-28T15:11:39Z) - Faster Video Moment Retrieval with Point-Level Supervision [70.51822333023145]
Video Moment Retrieval (VMR) aims at retrieving the most relevant events from an untrimmed video with natural language queries.
Existing VMR methods suffer from two defects: massive expensive temporal annotations and complicated cross-modal interaction modules.
We propose a novel method termed Cheaper and Faster Moment Retrieval (CFMR)
arXiv Detail & Related papers (2023-05-23T12:53:50Z) - Plug-and-Play Regulators for Image-Text Matching [76.28522712930668]
Exploiting fine-grained correspondence and visual-semantic alignments has shown great potential in image-text matching.
We develop two simple but quite effective regulators which efficiently encode the message output to automatically contextualize and aggregate cross-modal representations.
Experiments on MSCOCO and Flickr30K datasets validate that they can bring an impressive and consistent R@1 gain on multiple models.
arXiv Detail & Related papers (2023-03-23T15:42:05Z) - Effective Multi-User Delay-Constrained Scheduling with Deep Recurrent
Reinforcement Learning [28.35473469490186]
Multi-user delay constrained scheduling is important in many real-world applications including wireless communication, live streaming, and cloud computing.
We propose a deep reinforcement learning (DRL) algorithm, named Recurrent Softmax Delayed Deep Double Deterministic Policy Gradient ($mathttRSD4$)
$mathttRSD4$ guarantees resource and delay constraints by Lagrangian dual and delay-sensitive queues, respectively.
It also efficiently tackles partial observability with a memory mechanism enabled by the recurrent neural network (RNN) and introduces user-level decomposition and node-level
arXiv Detail & Related papers (2022-08-30T08:44:15Z) - ReAct: Temporal Action Detection with Relational Queries [84.76646044604055]
This work aims at advancing temporal action detection (TAD) using an encoder-decoder framework with action queries.
We first propose a relational attention mechanism in the decoder, which guides the attention among queries based on their relations.
Lastly, we propose to predict the localization quality of each action query at inference in order to distinguish high-quality queries.
arXiv Detail & Related papers (2022-07-14T17:46:37Z) - Deep Explicit Duration Switching Models for Time Series [84.33678003781908]
We propose a flexible model that is capable of identifying both state- and time-dependent switching dynamics.
State-dependent switching is enabled by a recurrent state-to-switch connection.
An explicit duration count variable is used to improve the time-dependent switching behavior.
arXiv Detail & Related papers (2021-10-26T17:35:21Z) - Collaborative Inference for Efficient Remote Monitoring [34.27630312942825]
A naive approach to resolve this on the model level is to use simpler architectures.
We propose an alternative solution by decomposing the predictive model as the sum of a simple function which serves as a local monitoring tool.
A sign requirement is imposed on the latter to ensure that the local monitoring function is safe.
arXiv Detail & Related papers (2020-02-12T01:57:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.