Electrostatics-based particle sampling and approximate inference
- URL: http://arxiv.org/abs/2406.20044v1
- Date: Fri, 28 Jun 2024 16:53:06 GMT
- Title: Electrostatics-based particle sampling and approximate inference
- Authors: Yongchao Huang,
- Abstract summary: A new particle-based sampling and approximate inference method, based on electrostatics and Newton mechanics principles, is introduced.
A discrete-time, discrete-space algorithmic design is provided for usage in more general inference problems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: A new particle-based sampling and approximate inference method, based on electrostatics and Newton mechanics principles, is introduced with theoretical ground, algorithm design and experimental validation. This method simulates an interacting particle system (IPS) where particles, i.e. the freely-moving negative charges and spatially-fixed positive charges with magnitudes proportional to the target distribution, interact with each other via attraction and repulsion induced by the resulting electric fields described by Poisson's equation. The IPS evolves towards a steady-state where the distribution of negative charges conforms to the target distribution. This physics-inspired method offers deterministic, gradient-free sampling and inference, achieving comparable performance as other particle-based and MCMC methods in benchmark tasks of inferring complex densities, Bayesian logistic regression and dynamical system identification. A discrete-time, discrete-space algorithmic design, readily extendable to continuous time and space, is provided for usage in more general inference problems occurring in probabilistic machine learning scenarios such as Bayesian inference, generative modelling, and beyond.
Related papers
- Inferring biological processes with intrinsic noise from cross-sectional data [0.8192907805418583]
Inferring dynamical models from data continues to be a significant challenge in computational biology.
We show that probability flow inference (PFI) disentangles force from intrinsicity while retaining the algorithmic ease of ODE inference.
In practical applications, we show that PFI enables accurate parameter and force estimation in high-dimensional reaction networks, and that it allows inference of cell differentiation dynamics with molecular noise.
arXiv Detail & Related papers (2024-10-10T00:33:25Z) - Dynamical Measure Transport and Neural PDE Solvers for Sampling [77.38204731939273]
We tackle the task of sampling from a probability density as transporting a tractable density function to the target.
We employ physics-informed neural networks (PINNs) to approximate the respective partial differential equations (PDEs) solutions.
PINNs allow for simulation- and discretization-free optimization and can be trained very efficiently.
arXiv Detail & Related papers (2024-07-10T17:39:50Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - Understanding Diffusion Models by Feynman's Path Integral [2.4373900721120285]
We introduce a novel formulation of diffusion models using Feynman's integral path.
We find this formulation providing comprehensive descriptions of score-based generative models.
We also demonstrate the derivation of backward differential equations and loss functions.
arXiv Detail & Related papers (2024-03-17T16:24:29Z) - Simulating Scattering of Composite Particles [0.09208007322096534]
We develop a non-perturbative approach to simulating scattering on classical and quantum computers.
The construction is designed to mimic a particle collision, wherein two composite particles are brought in contact.
The approach is well-suited for studying strongly coupled systems in both relativistic and non-relativistic settings.
arXiv Detail & Related papers (2023-10-20T18:00:50Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
We propose a Monte Carlo PDE solver for training unsupervised neural solvers.
We use the PDEs' probabilistic representation, which regards macroscopic phenomena as ensembles of random particles.
Our experiments on convection-diffusion, Allen-Cahn, and Navier-Stokes equations demonstrate significant improvements in accuracy and efficiency.
arXiv Detail & Related papers (2023-02-10T08:05:19Z) - Unsupervised Learning of Sampling Distributions for Particle Filters [80.6716888175925]
We put forward four methods for learning sampling distributions from observed measurements.
Experiments demonstrate that learned sampling distributions exhibit better performance than designed, minimum-degeneracy sampling distributions.
arXiv Detail & Related papers (2023-02-02T15:50:21Z) - Sampling with Mollified Interaction Energy Descent [57.00583139477843]
We present a new optimization-based method for sampling called mollified interaction energy descent (MIED)
MIED minimizes a new class of energies on probability measures called mollified interaction energies (MIEs)
We show experimentally that for unconstrained sampling problems our algorithm performs on par with existing particle-based algorithms like SVGD.
arXiv Detail & Related papers (2022-10-24T16:54:18Z) - Inference and De-Noising of Non-Gaussian Particle Distribution
Functions: A Generative Modeling Approach [0.0]
Inference on data produced by numerical simulations generally consists of binning the data to recover the particle distribution function.
Here we demonstrate the use of normalizing flows to learn a smooth, tractable approximation to the noisy particle distribution function.
arXiv Detail & Related papers (2021-10-05T16:38:04Z) - Generative Ensemble Regression: Learning Particle Dynamics from
Observations of Ensembles with Physics-Informed Deep Generative Models [27.623119767592385]
We propose a new method for inferring the governing ordinary differential equations (SODEs) by observing particle ensembles at discrete and sparse time instants.
Particle coordinates at a single time instant, possibly noisy or truncated, are recorded in each snapshot but are unpaired across the snapshots.
By training a physics-informed generative model that generates "fake" sample paths, we aim to fit the observed particle ensemble distributions with a curve in the probability measure space.
arXiv Detail & Related papers (2020-08-05T03:06:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.