Uncovering cognitive taskonomy through transfer learning in masked autoencoder-based fMRI reconstruction
- URL: http://arxiv.org/abs/2407.00033v1
- Date: Fri, 24 May 2024 09:29:16 GMT
- Title: Uncovering cognitive taskonomy through transfer learning in masked autoencoder-based fMRI reconstruction
- Authors: Youzhi Qu, Junfeng Xia, Xinyao Jian, Wendu Li, Kaining Peng, Zhichao Liang, Haiyan Wu, Quanying Liu,
- Abstract summary: We employ the masked autoencoder (MAE) model to reconstruct functional magnetic resonance imaging (fMRI) data.
Our study suggests that the fMRI reconstruction with MAE model can uncover the latent representation.
- Score: 6.3348067441225915
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data reconstruction is a widely used pre-training task to learn the generalized features for many downstream tasks. Although reconstruction tasks have been applied to neural signal completion and denoising, neural signal reconstruction is less studied. Here, we employ the masked autoencoder (MAE) model to reconstruct functional magnetic resonance imaging (fMRI) data, and utilize a transfer learning framework to obtain the cognitive taskonomy, a matrix to quantify the similarity between cognitive tasks. Our experimental results demonstrate that the MAE model effectively captures the temporal dynamics patterns and interactions within the brain regions, enabling robust cross-subject fMRI signal reconstruction. The cognitive taskonomy derived from the transfer learning framework reveals the relationships among cognitive tasks, highlighting subtask correlations within motor tasks and similarities between emotion, social, and gambling tasks. Our study suggests that the fMRI reconstruction with MAE model can uncover the latent representation and the obtained taskonomy offers guidance for selecting source tasks in neural decoding tasks for improving the decoding performance on target tasks.
Related papers
- BrainMAE: A Region-aware Self-supervised Learning Framework for Brain Signals [11.030708270737964]
We propose Brain Masked Auto-Encoder (BrainMAE) for learning representations directly from fMRI time-series data.
BrainMAE consistently outperforms established baseline methods by significant margins in four distinct downstream tasks.
arXiv Detail & Related papers (2024-06-24T19:16:24Z) - MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding [50.55024115943266]
We introduce a novel semantic alignment method of multi-subject fMRI signals using so-called MindFormer.
This model is specifically designed to generate fMRI-conditioned feature vectors that can be used for conditioning Stable Diffusion model for fMRI- to-image generation or large language model (LLM) for fMRI-to-text generation.
Our experimental results demonstrate that MindFormer generates semantically consistent images and text across different subjects.
arXiv Detail & Related papers (2024-05-28T00:36:25Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - DSAM: A Deep Learning Framework for Analyzing Temporal and Spatial Dynamics in Brain Networks [4.041732967881764]
Most rs-fMRI studies compute a single static functional connectivity matrix across brain regions of interest.
These approaches are at risk of oversimplifying brain dynamics and lack proper consideration of the goal at hand.
We propose a novel interpretable deep learning framework that learns goal-specific functional connectivity matrix directly from time series.
arXiv Detail & Related papers (2024-05-19T23:35:06Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
We propose fMRI-PTE, an innovative auto-encoder approach for fMRI pre-training.
Our approach involves transforming fMRI signals into unified 2D representations, ensuring consistency in dimensions and preserving brain activity patterns.
Our contributions encompass introducing fMRI-PTE, innovative data transformation, efficient training, a novel learning strategy, and the universal applicability of our approach.
arXiv Detail & Related papers (2023-11-01T07:24:22Z) - Learning Sequential Information in Task-based fMRI for Synthetic Data
Augmentation [10.629487323161323]
We propose an approach for generating synthetic fMRI sequences that can be used to create augmented training datasets in downstream learning.
The synthetic images are evaluated from multiple perspectives including visualizations and an autism spectrum disorder (ASD) classification task.
arXiv Detail & Related papers (2023-08-29T18:36:21Z) - Evaluating the structure of cognitive tasks with transfer learning [67.22168759751541]
This study investigates the transferability of deep learning representations between different EEG decoding tasks.
We conduct extensive experiments using state-of-the-art decoding models on two recently released EEG datasets.
arXiv Detail & Related papers (2023-07-28T14:51:09Z) - Joint fMRI Decoding and Encoding with Latent Embedding Alignment [77.66508125297754]
We introduce a unified framework that addresses both fMRI decoding and encoding.
Our model concurrently recovers visual stimuli from fMRI signals and predicts brain activity from images within a unified framework.
arXiv Detail & Related papers (2023-03-26T14:14:58Z) - BrainCLIP: Bridging Brain and Visual-Linguistic Representation Via CLIP
for Generic Natural Visual Stimulus Decoding [51.911473457195555]
BrainCLIP is a task-agnostic fMRI-based brain decoding model.
It bridges the modality gap between brain activity, image, and text.
BrainCLIP can reconstruct visual stimuli with high semantic fidelity.
arXiv Detail & Related papers (2023-02-25T03:28:54Z) - Facial Image Reconstruction from Functional Magnetic Resonance Imaging
via GAN Inversion with Improved Attribute Consistency [5.705640492618758]
We propose a new framework to reconstruct facial images from fMRI data.
The proposed framework accomplishes two goals: (1) reconstructing clear facial images from fMRI data and (2) maintaining the consistency of semantic characteristics.
arXiv Detail & Related papers (2022-07-03T11:18:35Z) - Attend and Decode: 4D fMRI Task State Decoding Using Attention Models [2.6954666679827137]
We present a novel architecture called Brain Attend and Decode (BAnD)
BAnD uses residual convolutional neural networks for spatial feature extraction and self-attention mechanisms temporal modeling.
We achieve significant performance gain compared to previous works on a 7-task benchmark from the Human Connectome Project-Young Adult dataset.
arXiv Detail & Related papers (2020-04-10T21:29:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.