Combinatorial Reasoning: Selecting Reasons in Generative AI Pipelines via Combinatorial Optimization
- URL: http://arxiv.org/abs/2407.00071v1
- Date: Wed, 19 Jun 2024 16:47:44 GMT
- Title: Combinatorial Reasoning: Selecting Reasons in Generative AI Pipelines via Combinatorial Optimization
- Authors: Mert Esencan, Tarun Advaith Kumar, Ata Akbari Asanjan, P. Aaron Lott, Masoud Mohseni, Can Unlu, Davide Venturelli, Alan Ho,
- Abstract summary: Large Language Models (LLMs) have demonstrated impressive capabilities at tasks that require human intelligence.
Yet the reasoning capability of LLMs is a matter of significant debate.
We introduce a framework for what we call Combinatorial Reasoning (CR), a fully-automated prompting method.
- Score: 2.090904951468026
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent Large Language Models (LLMs) have demonstrated impressive capabilities at tasks that require human intelligence and are a significant step towards human-like artificial intelligence (AI). Yet the performance of LLMs at reasoning tasks have been subpar and the reasoning capability of LLMs is a matter of significant debate. While it has been shown that the choice of the prompting technique to the LLM can alter its performance on a multitude of tasks, including reasoning, the best performing techniques require human-made prompts with the knowledge of the tasks at hand. We introduce a framework for what we call Combinatorial Reasoning (CR), a fully-automated prompting method, where reasons are sampled from an LLM pipeline and mapped into a Quadratic Unconstrained Binary Optimization (QUBO) problem. The framework investigates whether QUBO solutions can be profitably used to select a useful subset of the reasons to construct a Chain-of-Thought style prompt. We explore the acceleration of CR with specialized solvers. We also investigate the performance of simpler zero-shot strategies such as linear majority rule or random selection of reasons. Our preliminary study indicates that coupling a combinatorial solver to generative AI pipelines is an interesting avenue for AI reasoning and elucidates design principles for future CR methods.
Related papers
- Supervised Chain of Thought [5.389461633686935]
Chain of Thought (CoT) prompting offers a promising approach to solving complex reasoning tasks.
One-prompt-for-all approach poses significant challenges for models to generate the correct reasoning steps.
We show how task-specific supervision is essential for navigating the prompt space accurately and achieving optimal performance.
arXiv Detail & Related papers (2024-10-18T06:25:27Z) - Make LLMs better zero-shot reasoners: Structure-orientated autonomous reasoning [52.83539473110143]
We introduce a novel structure-oriented analysis method to help Large Language Models (LLMs) better understand a question.
To further improve the reliability in complex question-answering tasks, we propose a multi-agent reasoning system, Structure-oriented Autonomous Reasoning Agents (SARA)
Extensive experiments verify the effectiveness of the proposed reasoning system. Surprisingly, in some cases, the system even surpasses few-shot methods.
arXiv Detail & Related papers (2024-10-18T05:30:33Z) - Enhancing Multi-Step Reasoning Abilities of Language Models through Direct Q-Function Optimization [50.485788083202124]
Reinforcement Learning (RL) plays a crucial role in aligning large language models with human preferences and improving their ability to perform complex tasks.
We introduce Direct Q-function Optimization (DQO), which formulates the response generation process as a Markov Decision Process (MDP) and utilizes the soft actor-critic (SAC) framework to optimize a Q-function directly parameterized by the language model.
Experimental results on two math problem-solving datasets, GSM8K and MATH, demonstrate that DQO outperforms previous methods, establishing it as a promising offline reinforcement learning approach for aligning language models.
arXiv Detail & Related papers (2024-10-11T23:29:20Z) - Break the Chain: Large Language Models Can be Shortcut Reasoners [18.047917626825548]
Chain-of-Thought (CoT) reasoning utilize complex modules but are hampered by high token consumption, limited applicability, and challenges in thinking.
This paper conducts a critical evaluation of CoT prompting, extending beyond arithmetic to include complex logical and commonsense reasoning tasks.
We propose the integration of human-likes and shortcuts into language models (LMs) through "break the chain" strategies.
arXiv Detail & Related papers (2024-06-04T14:02:53Z) - Distilling Algorithmic Reasoning from LLMs via Explaining Solution Programs [2.3020018305241337]
Distilling explicit chain-of-thought reasoning paths has emerged as an effective method for improving the reasoning abilities of large language models.
We propose a novel approach to distill reasoning abilities from LLMs by leveraging their capacity to explain solutions.
Our experiments demonstrate that learning from explanations enables the Reasoner to more effectively guide program implementation by a Coder.
arXiv Detail & Related papers (2024-04-11T22:19:50Z) - Efficient Tool Use with Chain-of-Abstraction Reasoning [65.18096363216574]
Large language models (LLMs) need to ground their reasoning to real-world knowledge.
There remains challenges for fine-tuning LLM agents to invoke tools in multi-step reasoning problems.
We propose a new method for LLMs to better leverage tools in multi-step reasoning.
arXiv Detail & Related papers (2024-01-30T21:53:30Z) - LaRS: Latent Reasoning Skills for Chain-of-Thought Reasoning [61.7853049843921]
Chain-of-thought (CoT) prompting is a popular in-context learning approach for large language models (LLMs)
This paper introduces a new approach named Latent Reasoning Skills (LaRS) that employs unsupervised learning to create a latent space representation of rationales.
arXiv Detail & Related papers (2023-12-07T20:36:10Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
Large language models (LLMs) have demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems.
LLMs excel most in abductive reasoning, followed by deductive reasoning, while they are least effective at inductive reasoning.
We study single-task training, multi-task training, and "chain-of-thought" knowledge distillation fine-tuning technique to assess the performance of model.
arXiv Detail & Related papers (2023-10-02T01:00:50Z) - Query-Dependent Prompt Evaluation and Optimization with Offline Inverse
RL [62.824464372594576]
We aim to enhance arithmetic reasoning ability of Large Language Models (LLMs) through zero-shot prompt optimization.
We identify a previously overlooked objective of query dependency in such optimization.
We introduce Prompt-OIRL, which harnesses offline inverse reinforcement learning to draw insights from offline prompting demonstration data.
arXiv Detail & Related papers (2023-09-13T01:12:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.