SemUV: Deep Learning based semantic manipulation over UV texture map of virtual human heads
- URL: http://arxiv.org/abs/2407.00229v1
- Date: Fri, 28 Jun 2024 20:58:59 GMT
- Title: SemUV: Deep Learning based semantic manipulation over UV texture map of virtual human heads
- Authors: Anirban Mukherjee, Venkat Suprabath Bitra, Vignesh Bondugula, Tarun Reddy Tallapureddy, Dinesh Babu Jayagopi,
- Abstract summary: We introduce SemUV: a simple and effective approach using the FFHQ-UV dataset for semantic manipulation directly within the UV texture space.
We demonstrate its superior ability to preserve identity while effectively modifying semantic features such as age, gender, and facial hair.
- Score: 2.3523009382090323
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Designing and manipulating virtual human heads is essential across various applications, including AR, VR, gaming, human-computer interaction and VFX. Traditional graphic-based approaches require manual effort and resources to achieve accurate representation of human heads. While modern deep learning techniques can generate and edit highly photorealistic images of faces, their focus remains predominantly on 2D facial images. This limitation makes them less suitable for 3D applications. Recognizing the vital role of editing within the UV texture space as a key component in the 3D graphics pipeline, our work focuses on this aspect to benefit graphic designers by providing enhanced control and precision in appearance manipulation. Research on existing methods within the UV texture space is limited, complex, and poses challenges. In this paper, we introduce SemUV: a simple and effective approach using the FFHQ-UV dataset for semantic manipulation directly within the UV texture space. We train a StyleGAN model on the publicly available FFHQ-UV dataset, and subsequently train a boundary for interpolation and semantic feature manipulation. Through experiments comparing our method with 2D manipulation technique, we demonstrate its superior ability to preserve identity while effectively modifying semantic features such as age, gender, and facial hair. Our approach is simple, agnostic to other 3D components such as structure, lighting, and rendering, and also enables seamless integration into standard 3D graphics pipelines without demanding extensive domain expertise, time, or resources.
Related papers
- UV Gaussians: Joint Learning of Mesh Deformation and Gaussian Textures for Human Avatar Modeling [71.87807614875497]
We propose UV Gaussians, which models the 3D human body by jointly learning mesh deformations and 2D UV-space Gaussian textures.
We collect and process a new dataset of human motion, which includes multi-view images, scanned models, parametric model registration, and corresponding texture maps. Experimental results demonstrate that our method achieves state-of-the-art synthesis of novel view and novel pose.
arXiv Detail & Related papers (2024-03-18T09:03:56Z) - Nuvo: Neural UV Mapping for Unruly 3D Representations [61.87715912587394]
Existing UV mapping algorithms operate on geometry produced by state-of-the-art 3D reconstruction and generation techniques.
We present a UV mapping method designed to operate on geometry produced by 3D reconstruction and generation techniques.
arXiv Detail & Related papers (2023-12-11T18:58:38Z) - Differentiable Blocks World: Qualitative 3D Decomposition by Rendering
Primitives [70.32817882783608]
We present an approach that produces a simple, compact, and actionable 3D world representation by means of 3D primitives.
Unlike existing primitive decomposition methods that rely on 3D input data, our approach operates directly on images.
We show that the resulting textured primitives faithfully reconstruct the input images and accurately model the visible 3D points.
arXiv Detail & Related papers (2023-07-11T17:58:31Z) - TUVF: Learning Generalizable Texture UV Radiance Fields [32.417062841312976]
We introduce Texture UV Radiance Fields (TUVF) that generate textures in a learnable UV sphere space rather than directly on the 3D shape.
TUVF allows the texture to be disentangled from the underlying shape and transferable to other shapes that share the same UV space.
We perform our experiments on synthetic and real-world object datasets.
arXiv Detail & Related papers (2023-05-04T17:58:05Z) - FFHQ-UV: Normalized Facial UV-Texture Dataset for 3D Face Reconstruction [46.3392612457273]
This dataset contains over 50,000 high-quality texture UV-maps with even illuminations, neutral expressions, and cleaned facial regions.
Our pipeline utilizes the recent advances in StyleGAN-based facial image editing approaches.
Experiments show that our method improves the reconstruction accuracy over state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-25T03:21:05Z) - AUV-Net: Learning Aligned UV Maps for Texture Transfer and Synthesis [78.17671694498185]
We propose AUV-Net which learns to embed 3D surfaces into a 2D aligned UV space.
As a result, textures are aligned across objects, and can thus be easily synthesized by generative models of images.
The learned UV mapping and aligned texture representations enable a variety of applications including texture transfer, texture synthesis, and textured single view 3D reconstruction.
arXiv Detail & Related papers (2022-04-06T21:39:24Z) - HVTR: Hybrid Volumetric-Textural Rendering for Human Avatars [65.82222842213577]
We propose a novel neural rendering pipeline, which synthesizes virtual human avatars from arbitrary poses efficiently and at high quality.
First, we learn to encode articulated human motions on a dense UV manifold of the human body surface.
We then leverage the encoded information on the UV manifold to construct a 3D volumetric representation.
arXiv Detail & Related papers (2021-12-19T17:34:15Z) - Learning Indoor Inverse Rendering with 3D Spatially-Varying Lighting [149.1673041605155]
We address the problem of jointly estimating albedo, normals, depth and 3D spatially-varying lighting from a single image.
Most existing methods formulate the task as image-to-image translation, ignoring the 3D properties of the scene.
We propose a unified, learning-based inverse framework that formulates 3D spatially-varying lighting.
arXiv Detail & Related papers (2021-09-13T15:29:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.