SolarSAM: Building-scale Photovoltaic Potential Assessment Based on Segment Anything Model (SAM) and Remote Sensing for Emerging City
- URL: http://arxiv.org/abs/2407.00296v1
- Date: Sat, 29 Jun 2024 03:29:27 GMT
- Title: SolarSAM: Building-scale Photovoltaic Potential Assessment Based on Segment Anything Model (SAM) and Remote Sensing for Emerging City
- Authors: Guohao Wang,
- Abstract summary: This study introduces SolarSAM, a novel BIPV evaluation method that leverages remote sensing imagery and deep learning techniques.
During the process, SolarSAM segmented various building rooftops using text prompt guided semantic segmentation.
Separate PV models were then developed for Rooftop PV, Facade-integrated PV, and PV windows systems, using this segmented data and local climate information.
The annual BIPV power generation potential surpassed the city's total electricity consumption by a factor of 2.5.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Driven by advancements in photovoltaic (PV) technology, solar energy has emerged as a promising renewable energy source, due to its ease of integration onto building rooftops, facades, and windows. For the emerging cities, the lack of detailed street-level data presents a challenge for effectively assessing the potential of building-integrated photovoltaic (BIPV). To address this, this study introduces SolarSAM, a novel BIPV evaluation method that leverages remote sensing imagery and deep learning techniques, and an emerging city in northern China is utilized to validate the model performance. During the process, SolarSAM segmented various building rooftops using text prompt guided semantic segmentation. Separate PV models were then developed for Rooftop PV, Facade-integrated PV, and PV windows systems, using this segmented data and local climate information. The potential for BIPV installation, solar power generation, and city-wide power self-sufficiency were assessed, revealing that the annual BIPV power generation potential surpassed the city's total electricity consumption by a factor of 2.5. Economic and environmental analysis were also conducted, including levelized cost of electricity and carbon reduction calculations, comparing different BIPV systems across various building categories. These findings demonstrated the model's performance and reveled the potential of BIPV power generation in the future.
Related papers
- A Generative AI Technique for Synthesizing a Digital Twin for U.S. Residential Solar Adoption and Generation [0.6144680854063939]
We discuss a novel methodology to generate a granular, residential-scale realistic dataset for rooftop solar adoption across the contiguous United States.
The data-driven methodology consists of: (i) integrated machine learning models to identify PV adopters, (ii) methods to augment the data using explainable AI techniques, and (iii) methods to generate household-level hourly solar energy output.
The resulting synthetic datasets are validated using real-world data and can serve as a digital twin for modeling downstream tasks.
arXiv Detail & Related papers (2024-10-10T16:41:43Z) - Tree-based Forecasting of Day-ahead Solar Power Generation from Granular
Meteorological Features [1.8638865257327277]
We use state-of-the-art tree-based machine learning methods to produce such forecasts.
We use data from Belgium and forecast day-ahead PV power production at an hourly resolution.
arXiv Detail & Related papers (2023-11-30T08:47:37Z) - SolarFormer: Multi-scale Transformer for Solar PV Profiling [7.686020113962378]
SolarFormer is designed to segment solar panels from aerial imagery, offering insights into their location and size.
Our model leverages low-level features and incorporates an instance query mechanism to enhance the localization of solar PV installations.
Our experiments consistently demonstrate that our model either matches or surpasses state-of-the-art models.
arXiv Detail & Related papers (2023-10-30T22:22:01Z) - Improving day-ahead Solar Irradiance Time Series Forecasting by
Leveraging Spatio-Temporal Context [46.72071291175356]
Solar power harbors immense potential in mitigating climate change by substantially reducing CO$_2$ emissions.
However, the inherent variability of solar irradiance poses a significant challenge for seamlessly integrating solar power into the electrical grid.
In this paper, we put forth a deep learning architecture designed to harnesstemporal context using satellite data.
arXiv Detail & Related papers (2023-06-01T19:54:39Z) - A Comparative Study on Generative Models for High Resolution Solar
Observation Imaging [59.372588316558826]
This work investigates capabilities of current state-of-the-art generative models to accurately capture the data distribution behind observed solar activity states.
Using distributed training on supercomputers, we are able to train generative models for up to 1024x1024 resolution that produce high quality samples indistinguishable to human experts.
arXiv Detail & Related papers (2023-04-14T14:40:32Z) - Data-driven soiling detection in PV modules [58.6906336996604]
We study the problem of estimating the soiling ratio in photo-voltaic (PV) modules.
A key advantage of our algorithms is that they estimate soiling, without needing to train on labelled data.
Our experimental evaluation shows that we significantly outperform current state-of-the-art methods for estimating soiling ratio.
arXiv Detail & Related papers (2023-01-30T14:35:47Z) - Location-aware green energy availability forecasting for multiple time
frames in smart buildings: The case of Estonia [0.5156484100374058]
This research aims to forecast PV system output power based on weather and derived features using different machine learning models.
The objective is to obtain the best-fitting model to precisely predict output power by inspecting the data.
arXiv Detail & Related papers (2022-10-04T14:02:43Z) - SKIPP'D: a SKy Images and Photovoltaic Power Generation Dataset for
Short-term Solar Forecasting [0.0]
There are few publicly available standardized benchmark datasets for image-based solar forecasting.
We introduce SKIPP'D -- a SKy Images and Photovoltaic Power Generation dataset.
The dataset contains quality-controlled down-sampled sky images and PV power generation data ready-to-use for short-term solar forecasting using deep learning.
arXiv Detail & Related papers (2022-07-02T21:52:50Z) - Optimizing a domestic battery and solar photovoltaic system with deep
reinforcement learning [69.68068088508505]
A lowering in the cost of batteries and solar PV systems has led to a high uptake of solar battery home systems.
In this work, we use the deep deterministic policy algorithm to optimise the charging and discharging behaviour of a battery within such a system.
arXiv Detail & Related papers (2021-09-10T10:59:14Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
We take advantage of all parallel developments in mechanistic modeling and satellite data availability for advanced monitoring of crop productivity.
Our model successfully estimates gross primary productivity across a variety of C3 crop types and environmental conditions even though it does not use any local information from the corresponding sites.
This highlights its potential to map crop productivity from new satellite sensors at a global scale with the help of current Earth observation cloud computing platforms.
arXiv Detail & Related papers (2020-12-07T16:23:13Z) - Towards a Peer-to-Peer Energy Market: an Overview [68.8204255655161]
This work focuses on the electric power market, comparing the status quo with the recent trend towards the increase in distributed self-generation capabilities by prosumers.
We introduce a potential multi-layered architecture for a Peer-to-Peer (P2P) energy market, discussing the fundamental aspects of local production and local consumption as part of a microgrid.
To give a full picture to the reader, we also scrutinise relevant elements of energy trading, such as Smart Contract and grid stability.
arXiv Detail & Related papers (2020-03-02T20:32:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.