Aeroengine performance prediction using a physical-embedded data-driven method
- URL: http://arxiv.org/abs/2407.00501v1
- Date: Sat, 29 Jun 2024 17:56:58 GMT
- Title: Aeroengine performance prediction using a physical-embedded data-driven method
- Authors: Tong Mo, Shiran Dai, An Fu, Xiaomeng Zhu, Shuxiao Li,
- Abstract summary: We propose a strategy that combines domain knowledge from both the aeroengine and neural network realms to enable real-time prediction of engine performance parameters.
Leveraging aeroengine domain knowledge, we judiciously design the network structure and regulate the internal information flow.
To rigorously evaluate the effectiveness and robustness of our proposed strategy, we conduct comprehensive validation across two distinct datasets.
- Score: 4.450340826544577
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate and efficient prediction of aeroengine performance is of paramount importance for engine design, maintenance, and optimization endeavours. However, existing methodologies often struggle to strike an optimal balance among predictive accuracy, computational efficiency, modelling complexity, and data dependency. To address these challenges, we propose a strategy that synergistically combines domain knowledge from both the aeroengine and neural network realms to enable real-time prediction of engine performance parameters. Leveraging aeroengine domain knowledge, we judiciously design the network structure and regulate the internal information flow. Concurrently, drawing upon neural network domain expertise, we devise four distinct feature fusion methods and introduce an innovative loss function formulation. To rigorously evaluate the effectiveness and robustness of our proposed strategy, we conduct comprehensive validation across two distinct datasets. The empirical results demonstrate :(1) the evident advantages of our tailored loss function; (2) our model's ability to maintain equal or superior performance with a reduced parameter count; (3) our model's reduced data dependency compared to generalized neural network architectures; (4)Our model is more interpretable than traditional black box machine learning methods.
Related papers
- Research on Optimizing Real-Time Data Processing in High-Frequency Trading Algorithms using Machine Learning [19.43972851292453]
The objective of this work is to optimise the real-time processing of data in high-frequency trading algorithms.
The dynamic feature selection mechanism is responsible for monitoring and analysing market data in real time.
The lightweight neural networks are designed in a modular fashion, comprising fast convolutional layers and pruning techniques.
arXiv Detail & Related papers (2024-12-02T02:46:10Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Joint Hypergraph Rewiring and Memory-Augmented Forecasting Techniques in Digital Twin Technology [2.368662284133926]
Digital Twin technology creates virtual replicas of physical objects, processes, or systems by replicating their properties, data, and behaviors.
Digital Twin technology has leveraged Graph forecasting techniques in large-scale complex sensor networks to enable accurate forecasting and simulation of diverse scenarios.
We introduce a hybrid architecture that enhances the hypergraph representation learning backbone by incorporating fast adaptation to new patterns and memory-based retrieval of past knowledge.
arXiv Detail & Related papers (2024-08-22T14:08:45Z) - Predicting Traffic Flow with Federated Learning and Graph Neural with Asynchronous Computations Network [0.0]
We present a novel deep-learning method called Federated Learning and Asynchronous Graph Convolutional Networks (FLAGCN)
Our framework incorporates the principles of asynchronous graph convolutional networks with federated learning to enhance accuracy and efficiency of real-time traffic flow prediction.
arXiv Detail & Related papers (2024-01-05T09:36:42Z) - Towards Robust Dataset Learning [90.2590325441068]
We propose a principled, tri-level optimization to formulate the robust dataset learning problem.
Under an abstraction model that characterizes robust vs. non-robust features, the proposed method provably learns a robust dataset.
arXiv Detail & Related papers (2022-11-19T17:06:10Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
We use machine learning techniques to learn a differentiable dynamics model of the system from data.
We show that a neural network can model highly nonlinear behaviors accurately for large time horizons.
In our hardware experiments, we demonstrate that our learned model can represent complex dynamics for both the Spot and Radio-controlled (RC) car.
arXiv Detail & Related papers (2022-04-09T22:07:34Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning (FL) has become a promising tool for training effective machine learning models among distributed clients.
However, low quality models could be uploaded to the aggregator server by unreliable clients, leading to a degradation or even a collapse of training.
We model these unreliable behaviors of clients and propose a defensive mechanism to mitigate such a security risk.
arXiv Detail & Related papers (2021-05-10T08:02:27Z) - Understanding the Effects of Data Parallelism and Sparsity on Neural
Network Training [126.49572353148262]
We study two factors in neural network training: data parallelism and sparsity.
Despite their promising benefits, understanding of their effects on neural network training remains elusive.
arXiv Detail & Related papers (2020-03-25T10:49:22Z) - Learning Queuing Networks by Recurrent Neural Networks [0.0]
We propose a machine-learning approach to derive performance models from data.
We exploit a deterministic approximation of their average dynamics in terms of a compact system of ordinary differential equations.
This allows for an interpretable structure of the neural network, which can be trained from system measurements to yield a white-box parameterized model.
arXiv Detail & Related papers (2020-02-25T10:56:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.