Establishing Deep InfoMax as an effective self-supervised learning methodology in materials informatics
- URL: http://arxiv.org/abs/2407.00671v1
- Date: Sun, 30 Jun 2024 11:33:49 GMT
- Title: Establishing Deep InfoMax as an effective self-supervised learning methodology in materials informatics
- Authors: Michael Moran, Vladimir V. Gusev, Michael W. Gaultois, Dmytro Antypov, Matthew J. Rosseinsky,
- Abstract summary: Deep InfoMax is a self-supervised machine learning framework for materials informatics.
Deep InfoMax maximises the mutual information between a point set (or graph) representation of a crystal and a vector representation suitable for downstream learning.
We investigate the benefits of Deep InfoMax pretraining implemented on the Site-Net architecture to improve the performance of downstream property prediction models.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The scarcity of property labels remains a key challenge in materials informatics, whereas materials data without property labels are abundant in comparison. By pretraining supervised property prediction models on self-supervised tasks that depend only on the "intrinsic information" available in any Crystallographic Information File (CIF), there is potential to leverage the large amount of crystal data without property labels to improve property prediction results on small datasets. We apply Deep InfoMax as a self-supervised machine learning framework for materials informatics that explicitly maximises the mutual information between a point set (or graph) representation of a crystal and a vector representation suitable for downstream learning. This allows the pretraining of supervised models on large materials datasets without the need for property labels and without requiring the model to reconstruct the crystal from a representation vector. We investigate the benefits of Deep InfoMax pretraining implemented on the Site-Net architecture to improve the performance of downstream property prediction models with small amounts (<10^3) of data, a situation relevant to experimentally measured materials property databases. Using a property label masking methodology, where we perform self-supervised learning on larger supervised datasets and then train supervised models on a small subset of the labels, we isolate Deep InfoMax pretraining from the effects of distributional shift. We demonstrate performance improvements in the contexts of representation learning and transfer learning on the tasks of band gap and formation energy prediction. Having established the effectiveness of Deep InfoMax pretraining in a controlled environment, our findings provide a foundation for extending the approach to address practical challenges in materials informatics.
Related papers
- Supervised Pretraining for Material Property Prediction [0.36868085124383626]
Self-supervised learning (SSL) offers a promising alternative by pretraining on large, unlabeled datasets to develop foundation models.
In this work, we propose supervised pretraining, where available class information serves as surrogate labels to guide learning.
To further enhance representation learning, we propose a graph-based augmentation technique that injects noise to improve robustness without structurally deforming material graphs.
arXiv Detail & Related papers (2025-04-27T19:00:41Z) - Towards Data-Efficient Pretraining for Atomic Property Prediction [51.660835328611626]
We show that pretraining on a task-relevant dataset can match or surpass large-scale pretraining.
We introduce the Chemical Similarity Index (CSI), a novel metric inspired by computer vision's Fr'echet Inception Distance.
arXiv Detail & Related papers (2025-02-16T11:46:23Z) - Web-Scale Visual Entity Recognition: An LLM-Driven Data Approach [56.55633052479446]
Web-scale visual entity recognition presents significant challenges due to the lack of clean, large-scale training data.
We propose a novel methodology to curate such a dataset, leveraging a multimodal large language model (LLM) for label verification, metadata generation, and rationale explanation.
Experiments demonstrate that models trained on this automatically curated data achieve state-of-the-art performance on web-scale visual entity recognition tasks.
arXiv Detail & Related papers (2024-10-31T06:55:24Z) - Self-Supervised Learning for User Localization [8.529237718266042]
Machine learning techniques have shown remarkable accuracy in localization tasks.
Their dependency on vast amounts of labeled data, particularly Channel State Information (CSI) and corresponding coordinates, remains a bottleneck.
We propose a pioneering approach that leverages self-supervised pretraining on unlabeled data to boost the performance of supervised learning for user localization based on CSI.
arXiv Detail & Related papers (2024-04-19T21:49:10Z) - Is Self-Supervised Pretraining Good for Extrapolation in Molecular
Property Prediction? [16.211138511816642]
In material science, the prediction of unobserved values, commonly referred to as extrapolation, is critical for property prediction.
We propose an experimental framework for the demonstration and empirically reveal that while models were unable to accurately extrapolate absolute property values, self-supervised pretraining enables them to learn relative tendencies of unobserved property values.
arXiv Detail & Related papers (2023-08-16T03:38:43Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
We introduce Action-Aware Embodied Learning for Perception (ALP)
ALP incorporates action information into representation learning through a combination of optimizing a reinforcement learning policy and an inverse dynamics prediction objective.
We show that ALP outperforms existing baselines in several downstream perception tasks.
arXiv Detail & Related papers (2023-06-16T21:51:04Z) - Bridging the Gap to Real-World Object-Centric Learning [66.55867830853803]
We show that reconstructing features from models trained in a self-supervised manner is a sufficient training signal for object-centric representations to arise in a fully unsupervised way.
Our approach, DINOSAUR, significantly out-performs existing object-centric learning models on simulated data.
arXiv Detail & Related papers (2022-09-29T15:24:47Z) - Pre-training via Denoising for Molecular Property Prediction [53.409242538744444]
We describe a pre-training technique that utilizes large datasets of 3D molecular structures at equilibrium.
Inspired by recent advances in noise regularization, our pre-training objective is based on denoising.
arXiv Detail & Related papers (2022-05-31T22:28:34Z) - Crystal Twins: Self-supervised Learning for Crystalline Material
Property Prediction [8.048439531116367]
We introduce Crystal Twins (CT): an SSL method for crystalline materials property prediction.
We pre-train a Graph Neural Network (GNN) by applying the redundancy reduction principle to the graph latent embeddings of augmented instances.
By sharing the pre-trained weights when fine-tuning the GNN for regression tasks, we significantly improve the performance for 7 challenging material property prediction benchmarks.
arXiv Detail & Related papers (2022-05-04T05:08:46Z) - On The State of Data In Computer Vision: Human Annotations Remain
Indispensable for Developing Deep Learning Models [0.0]
High-quality labeled datasets play a crucial role in fueling the development of machine learning (ML)
Since the emergence of the ImageNet dataset and the AlexNet model in 2012, the size of new open-source labeled vision datasets has remained roughly constant.
Only a minority of publications in the computer vision community tackle supervised learning on datasets that are orders of magnitude larger than Imagenet.
arXiv Detail & Related papers (2021-07-31T00:08:21Z) - On the Composition and Limitations of Publicly Available COVID-19 X-Ray
Imaging Datasets [0.0]
Data scarcity, mismatch between training and target population, group imbalance, and lack of documentation are important sources of bias.
This paper presents an overview of the currently public available COVID-19 chest X-ray datasets.
arXiv Detail & Related papers (2020-08-26T14:16:01Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z) - DeGAN : Data-Enriching GAN for Retrieving Representative Samples from a
Trained Classifier [58.979104709647295]
We bridge the gap between the abundance of available data and lack of relevant data, for the future learning tasks of a trained network.
We use the available data, that may be an imbalanced subset of the original training dataset, or a related domain dataset, to retrieve representative samples.
We demonstrate that data from a related domain can be leveraged to achieve state-of-the-art performance.
arXiv Detail & Related papers (2019-12-27T02:05:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.