NAIST Simultaneous Speech Translation System for IWSLT 2024
- URL: http://arxiv.org/abs/2407.00826v1
- Date: Sun, 30 Jun 2024 20:41:02 GMT
- Title: NAIST Simultaneous Speech Translation System for IWSLT 2024
- Authors: Yuka Ko, Ryo Fukuda, Yuta Nishikawa, Yasumasa Kano, Tomoya Yanagita, Kosuke Doi, Mana Makinae, Haotian Tan, Makoto Sakai, Sakriani Sakti, Katsuhito Sudoh, Satoshi Nakamura,
- Abstract summary: This paper describes NAIST's submission to the simultaneous track of the IWSLT 2024 Evaluation Campaign.
We develop a multilingual end-to-end speech-to-text translation model combining two pre-trained language models, HuBERT and mBART.
We trained this model with two decoding policies, Local Agreement (LA) and AlignAtt.
Our speech-to-speech translation method is a cascade of the above speech-to-text model and an incremental text-to-speech (TTS) module.
- Score: 18.77311658086372
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper describes NAIST's submission to the simultaneous track of the IWSLT 2024 Evaluation Campaign: English-to-{German, Japanese, Chinese} speech-to-text translation and English-to-Japanese speech-to-speech translation. We develop a multilingual end-to-end speech-to-text translation model combining two pre-trained language models, HuBERT and mBART. We trained this model with two decoding policies, Local Agreement (LA) and AlignAtt. The submitted models employ the LA policy because it outperformed the AlignAtt policy in previous models. Our speech-to-speech translation method is a cascade of the above speech-to-text model and an incremental text-to-speech (TTS) module that incorporates a phoneme estimation model, a parallel acoustic model, and a parallel WaveGAN vocoder. We improved our incremental TTS by applying the Transformer architecture with the AlignAtt policy for the estimation model. The results show that our upgraded TTS module contributed to improving the system performance.
Related papers
- CMU's IWSLT 2024 Simultaneous Speech Translation System [80.15755988907506]
This paper describes CMU's submission to the IWSLT 2024 Simultaneous Speech Translation (SST) task for translating English speech to German text in a streaming manner.
Our end-to-end speech-to-text (ST) system integrates the WavLM speech encoder, a modality adapter, and the Llama2-7B-Base model as the decoder.
arXiv Detail & Related papers (2024-08-14T10:44:51Z) - TransVIP: Speech to Speech Translation System with Voice and Isochrony Preservation [97.54885207518946]
We introduce a novel model framework TransVIP that leverages diverse datasets in a cascade fashion.
We propose two separated encoders to preserve the speaker's voice characteristics and isochrony from the source speech during the translation process.
Our experiments on the French-English language pair demonstrate that our model outperforms the current state-of-the-art speech-to-speech translation model.
arXiv Detail & Related papers (2024-05-28T04:11:37Z) - SeamlessM4T: Massively Multilingual & Multimodal Machine Translation [90.71078166159295]
We introduce SeamlessM4T, a single model that supports speech-to-speech translation, speech-to-text translation, text-to-text translation, and automatic speech recognition for up to 100 languages.
We developed the first multilingual system capable of translating from and into English for both speech and text.
On FLEURS, SeamlessM4T sets a new standard for translations into multiple target languages, achieving an improvement of 20% BLEU over the previous SOTA in direct speech-to-text translation.
arXiv Detail & Related papers (2023-08-22T17:44:18Z) - AudioPaLM: A Large Language Model That Can Speak and Listen [79.44757696533709]
We introduce AudioPaLM, a large language model for speech understanding and generation.
AudioPaLM fuses text-based and speech-based language models.
It can process and generate text and speech with applications including speech recognition and speech-to-speech translation.
arXiv Detail & Related papers (2023-06-22T14:37:54Z) - KIT's Multilingual Speech Translation System for IWSLT 2023 [58.5152569458259]
We describe our speech translation system for the multilingual track of IWSLT 2023.
The task requires translation into 10 languages of varying amounts of resources.
Our cascaded speech system substantially outperforms its end-to-end counterpart on scientific talk translation.
arXiv Detail & Related papers (2023-06-08T16:13:20Z) - ComSL: A Composite Speech-Language Model for End-to-End Speech-to-Text
Translation [79.66359274050885]
We present ComSL, a speech-language model built atop a composite architecture of public pretrained speech-only and language-only models.
Our approach has demonstrated effectiveness in end-to-end speech-to-text translation tasks.
arXiv Detail & Related papers (2023-05-24T07:42:15Z) - ON-TRAC Consortium Systems for the IWSLT 2022 Dialect and Low-resource
Speech Translation Tasks [8.651248939672769]
This paper describes the ON-TRAC Consortium translation systems developed for two challenge tracks featured in the Evaluation Campaign of IWSLT 2022: low-resource and dialect speech translation.
We build an end-to-end model as our joint primary submission, and compare it against cascaded models that leverage a large fine-tuned wav2vec 2.0 model for ASR.
Our results highlight that self-supervised models trained on smaller sets of target data are more effective to low-resource end-to-end ST fine-tuning, compared to large off-the-shelf models.
arXiv Detail & Related papers (2022-05-04T10:36:57Z) - The NiuTrans End-to-End Speech Translation System for IWSLT 2021 Offline
Task [23.008938777422767]
This paper describes the submission of the NiuTrans end-to-end speech translation system for the IWSLT 2021 offline task.
We use the Transformer-based model architecture and enhance it by Conformer, relative position encoding, and stacked acoustic and textual encoding.
We achieve 33.84 BLEU points on the MuST-C En-De test set, which shows the enormous potential of the end-to-end model.
arXiv Detail & Related papers (2021-07-06T07:45:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.