Deep Image-to-Recipe Translation
- URL: http://arxiv.org/abs/2407.00911v1
- Date: Mon, 1 Jul 2024 02:33:07 GMT
- Title: Deep Image-to-Recipe Translation
- Authors: Jiangqin Ma, Bilal Mawji, Franz Williams,
- Abstract summary: Deep Image-to-Recipe Translation aims to bridge the gap between cherished food memories and the art of culinary creation.
Our primary objective involves predicting ingredients from a given food image.
Our approach emphasizes the importance of metrics such as Intersection over Union (IoU) and F1 score in scenarios where accuracy alone might be misleading.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The modern saying, "You Are What You Eat" resonates on a profound level, reflecting the intricate connection between our identities and the food we consume. Our project, Deep Image-to-Recipe Translation, is an intersection of computer vision and natural language generation that aims to bridge the gap between cherished food memories and the art of culinary creation. Our primary objective involves predicting ingredients from a given food image. For this task, we first develop a custom convolutional network and then compare its performance to a model that leverages transfer learning. We pursue an additional goal of generating a comprehensive set of recipe steps from a list of ingredients. We frame this process as a sequence-to-sequence task and develop a recurrent neural network that utilizes pre-trained word embeddings. We address several challenges of deep learning including imbalanced datasets, data cleaning, overfitting, and hyperparameter selection. Our approach emphasizes the importance of metrics such as Intersection over Union (IoU) and F1 score in scenarios where accuracy alone might be misleading. For our recipe prediction model, we employ perplexity, a commonly used and important metric for language models. We find that transfer learning via pre-trained ResNet-50 weights and GloVe embeddings provide an exceptional boost to model performance, especially when considering training resource constraints. Although we have made progress on the image-to-recipe translation, there is an opportunity for future exploration with advancements in model architectures, dataset scalability, and enhanced user interaction.
Related papers
- Retrieval Augmented Recipe Generation [96.43285670458803]
We propose a retrieval augmented large multimodal model for recipe generation.
It retrieves recipes semantically related to the image from an existing datastore as a supplement.
It calculates the consistency among generated recipe candidates, which use different retrieval recipes as context for generation.
arXiv Detail & Related papers (2024-11-13T15:58:50Z) - ChefFusion: Multimodal Foundation Model Integrating Recipe and Food Image Generation [19.704975821172315]
We introduce a novel food computing foundation model that achieves true multimodality.
By leveraging large language models (LLMs) and pre-trained image encoder and decoder models, our model can perform a diverse array of food computing-related tasks.
arXiv Detail & Related papers (2024-09-18T14:24:29Z) - Premonition: Using Generative Models to Preempt Future Data Changes in
Continual Learning [63.850451635362425]
Continual learning requires a model to adapt to ongoing changes in the data distribution.
We show that the combination of a large language model and an image generation model can similarly provide useful premonitions.
We find that the backbone of our pre-trained networks can learn representations useful for the downstream continual learning problem.
arXiv Detail & Related papers (2024-03-12T06:29:54Z) - FIRE: Food Image to REcipe generation [10.45344523054623]
Food computing aims to develop end-to-end intelligent systems capable of autonomously producing recipe information for a food image.
This paper proposes FIRE, a novel methodology tailored to recipe generation in the food computing domain.
We showcase two practical applications that can benefit from integrating FIRE with large language model prompting.
arXiv Detail & Related papers (2023-08-28T08:14:20Z) - Transferring Knowledge for Food Image Segmentation using Transformers
and Convolutions [65.50975507723827]
Food image segmentation is an important task that has ubiquitous applications, such as estimating the nutritional value of a plate of food.
One challenge is that food items can overlap and mix, making them difficult to distinguish.
Two models are trained and compared, one based on convolutional neural networks and the other on Bidirectional representation for Image Transformers (BEiT)
The BEiT model outperforms the previous state-of-the-art model by achieving a mean intersection over union of 49.4 on FoodSeg103.
arXiv Detail & Related papers (2023-06-15T15:38:10Z) - Recipe2Vec: Multi-modal Recipe Representation Learning with Graph Neural
Networks [23.378813327724686]
We formalize the problem of multi-modal recipe representation learning to integrate the visual, textual, and relational information into recipe embeddings.
We first present Large-RG, a new recipe graph data with over half a million nodes, making it the largest recipe graph to date.
We then propose Recipe2Vec, a novel graph neural network based recipe embedding model to capture multi-modal information.
arXiv Detail & Related papers (2022-05-24T23:04:02Z) - Learning Co-segmentation by Segment Swapping for Retrieval and Discovery [67.6609943904996]
The goal of this work is to efficiently identify visually similar patterns from a pair of images.
We generate synthetic training pairs by selecting object segments in an image and copy-pasting them into another image.
We show our approach provides clear improvements for artwork details retrieval on the Brueghel dataset.
arXiv Detail & Related papers (2021-10-29T16:51:16Z) - Learning Structural Representations for Recipe Generation and Food
Retrieval [101.97397967958722]
We propose a novel framework of Structure-aware Generation Network (SGN) to tackle the food recipe generation task.
Our proposed model can produce high-quality and coherent recipes, and achieve the state-of-the-art performance on the benchmark Recipe1M dataset.
arXiv Detail & Related papers (2021-10-04T06:36:31Z) - Revamping Cross-Modal Recipe Retrieval with Hierarchical Transformers
and Self-supervised Learning [17.42688184238741]
Cross-modal recipe retrieval has recently gained substantial attention due to the importance of food in people's lives.
We propose a simplified end-to-end model based on well established and high performing encoders for text and images.
Our proposed method achieves state-of-the-art performance in the cross-modal recipe retrieval task on the Recipe1M dataset.
arXiv Detail & Related papers (2021-03-24T10:17:09Z) - CHEF: Cross-modal Hierarchical Embeddings for Food Domain Retrieval [20.292467149387594]
We introduce a novel cross-modal learning framework to jointly model the latent representations of images and text in the food image-recipe association and retrieval tasks.
Our experiments show that by making use of efficient tree-structured Long Short-Term Memory as the text encoder in our computational cross-modal retrieval framework, we are able to identify the main ingredients and cooking actions in the recipe descriptions without explicit supervision.
arXiv Detail & Related papers (2021-02-04T11:24:34Z) - Structure-Aware Generation Network for Recipe Generation from Images [142.047662926209]
We investigate an open research task of generating cooking instructions based on only food images and ingredients.
Target recipes are long-length paragraphs and do not have annotations on structure information.
We propose a novel framework of Structure-aware Generation Network (SGN) to tackle the food recipe generation task.
arXiv Detail & Related papers (2020-09-02T10:54:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.