Quantum phase properties of a state driven by a classical fild
- URL: http://arxiv.org/abs/2407.00982v1
- Date: Mon, 1 Jul 2024 05:47:23 GMT
- Title: Quantum phase properties of a state driven by a classical fild
- Authors: Naveen Kumar, Arpita Chatterjee,
- Abstract summary: We consider a nonclassical state generated by an atom-cavity field interaction in presence of a driven field.
The quantum state that corresponds to the output cavity field is obtained by tracing out the atom part from $|psi(t)ranglelanglepsi(t)|$.
- Score: 1.2974520793373163
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider a nonclassical state generated by an atom-cavity field interaction in presence of a driven field. In the scheme, the two-level atom is moved through the cavity and driven by a classical field. The atom interacts dispersively with the cavity field, which results in a photon-number-dependent Stark shift. Assuming that the atom enters the cavity in the excited state $|{a}\rangle$, the obtained output cavity field is taken into account. The state vector $|\psi(t)\rangle$ describes the entire atom-field system but in our work we deal with the statistical aspects of the cavity field only. The quantum state that corresponds to the output cavity field is obtained by tracing out the atom part from $|{\psi(t)}\rangle\langle{\psi(t)}|$. Different quantum phase properties such as quantum phase distribution, angular $Q$ phase function, phase dispersion are evaluated for the obtained radiation field. The second-order correlation function $g^2(0)$, an indirect phase characteristic is also considered.
Related papers
- Quantum Entanglement in the Rabi Model with the Presence of the $A^{2}$ Term [0.0]
The quantum Rabi model (QRM) is used to describe the light-matter interaction at the quantum level in Cavity Quantum Electrodynamics (Cavity QED)
In this study, we comparatively analyze the behaviors of the QRM and the influence of the $A2$ term in the light-matter quantum Hamiltonian.
arXiv Detail & Related papers (2024-09-06T18:30:32Z) - Nonclassical properties of a state generated by a driven dispersive interaction [1.2974520793373163]
A cavity field state is created by the atom-cavity field's interaction in the presence of a driven field.
A photon number dependent Stark shift is induced by the atom's dispersive interaction with the cavity field.
arXiv Detail & Related papers (2024-04-26T07:02:23Z) - Nonclassicality in a dispersive atom-cavity field interaction in presence of an external driving field [1.2974520793373163]
We investigate nonclassical properties of a state generated by the interaction of a three-level atom with a quantized cavity field and an external classical driving field.
The state vector $|psi(t)rangle$ describes the entire atom-field system but we analyze the properties of the cavity field independently neglecting the atomic component of the system.
arXiv Detail & Related papers (2024-04-25T11:17:56Z) - Nonclassical properties of a deformed atom-cavity field state [4.0997147446591775]
We analyze a nonclassical state produced by an atom-cavity field interaction.
We use deforming the field operators and introducing nonlinearity to the classic Jaynes-Cummings model.
arXiv Detail & Related papers (2023-04-11T15:11:48Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Coherent dynamics in a five-level atomic system [62.997667081978825]
coherent control of multi-partite quantum systems is one of the central prerequisites in quantum information processing.
Laser-cooled neon atoms in the metastable state of state $1s2 2s2 2p5 3s$ are prepared.
Coherence properties of the prepared states are studied using Ramsey and spin echo measurements.
arXiv Detail & Related papers (2022-10-21T11:44:15Z) - Realization of a fractional quantum Hall state with ultracold atoms [0.0]
Emblematic instances are fractional quantum Hall states, where the interplay of magnetic fields and strong interactions gives rise to fractionally charged quasi-particles.
Here, we realize a fractional quantum Hall (FQH) state with ultracold atoms in an optical lattice.
arXiv Detail & Related papers (2022-10-19T22:48:43Z) - Partitioning dysprosium's electronic spin to reveal entanglement in
non-classical states [55.41644538483948]
We report on an experimental study of entanglement in dysprosium's electronic spin.
Our findings open up the possibility to engineer novel types of entangled atomic ensembles.
arXiv Detail & Related papers (2021-04-29T15:02:22Z) - Mesoscopic quantum superposition states of weakly-coupled matter-wave
solitons [58.720142291102135]
We establish quantum features of an atomic soliton Josephson junction (SJJ) device.
We show that the SJJ-model in quantum domain exhibits unusual features due to its effective nonlinear strength proportional to the square of total particle number.
We have shown that the obtained quantum state is more resistant to few particle losses from the condensates if tiny components of entangled Fock states are present.
arXiv Detail & Related papers (2020-11-26T09:26:19Z) - Electrically tuned hyperfine spectrum in neutral
Tb(II)(Cp$^{\rm{iPr5}}$)$_2$ single-molecule magnet [64.10537606150362]
Both molecular electronic and nuclear spin levels can be used as qubits.
In solid state systems with dopants, an electric field was shown to effectively change the spacing between the nuclear spin qubit levels.
This hyperfine Stark effect may be useful for applications of molecular nuclear spins for quantum computing.
arXiv Detail & Related papers (2020-07-31T01:48:57Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.