Individual brain parcellation: Review of methods, validations and applications
- URL: http://arxiv.org/abs/2407.00984v1
- Date: Mon, 1 Jul 2024 05:48:05 GMT
- Title: Individual brain parcellation: Review of methods, validations and applications
- Authors: Chengyi Li, Shan Yu, Yue Cui,
- Abstract summary: Accurate mapping of brain functional regions at the individual level is pivotal for a comprehensive understanding of the variations in brain function and behaviors.
With the development of neuroimaging and machine learning techniques, studies on individual brain parcellation are booming.
- Score: 7.159138402684875
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Individual brains vary greatly in morphology, connectivity and organization. The applicability of group-level parcellations is limited by the rapid development of precision medicine today because they do not take into account the variation of parcels at the individual level. Accurate mapping of brain functional regions at the individual level is pivotal for a comprehensive understanding of the variations in brain function and behaviors, early and precise identification of brain abnormalities, as well as personalized treatments for neuropsychiatric disorders. With the development of neuroimaging and machine learning techniques, studies on individual brain parcellation are booming. In this paper, we offer an overview of recent advances in the methodologies of individual brain parcellation, including optimization- and learning-based methods. Comprehensive evaluation metrics to validate individual brain mapping have been introduced. We also review the studies of how individual brain mapping promotes neuroscience research and clinical medicine. Finally, we summarize the major challenges and important future directions of individualized brain parcellation. Collectively, we intend to offer a thorough overview of individual brain parcellation methods, validations, and applications, along with highlighting the current challenges that call for an urgent demand for integrated platforms that integrate datasets, methods, and validations.
Related papers
- Brain-JEPA: Brain Dynamics Foundation Model with Gradient Positioning and Spatiotemporal Masking [5.528773909620209]
Brain-JEPA is a brain dynamics foundation model with the Joint-Embedding Predictive Architecture (JEPA)
Brain-JEPA incorporates two innovative techniques: Brain Gradient Positioning and Spatiotemporal Masking.
arXiv Detail & Related papers (2024-09-28T17:06:06Z) - Cross-subject Brain Functional Connectivity Analysis for Multi-task Cognitive State Evaluation [16.198003101055264]
This study adopts brain functional connectivity with electroencephalography signals to capture associations in brain regions across multiple subjects for evaluating real-time cognitive states.
Thirty subjects are acquired for analysis and evaluation. The results are interpreted through different perspectives, including inner-subject and cross-subject for task-wise and gender-wise underlying brain functional connectivity.
arXiv Detail & Related papers (2024-08-27T12:51:59Z) - Identifying the Hierarchical Emotional Areas in the Human Brain Through Information Fusion [19.144416163452533]
This study aims to identify an in-depth theoretical graph of how to maximize interactions between brain regions.
Comprehensive experiments reveal that hierarchical emotional areas, from lower to higher levels, facilitate the fundamental process of emotion perception.
Our findings provide unique insights into the brain mechanisms underlying specific emotions based on the psychological constructionist hypothesis.
arXiv Detail & Related papers (2024-08-01T12:57:12Z) - Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation [53.70131202548981]
We present a two-step segmentation framework employing Knowledge-Guided Prompt Learning (KGPL) for brain MRI.
Specifically, we first pre-train segmentation models on large-scale datasets with sub-optimal labels.
The introduction of knowledge-wise prompts captures semantic relationships between anatomical variability and biological processes.
arXiv Detail & Related papers (2024-07-31T04:32:43Z) - Towards a "universal translator" for neural dynamics at single-cell, single-spike resolution [10.49121904052395]
We build towards a first foundation model for neural spiking data that can solve a diverse set of tasks across multiple brain areas.
Prediction tasks include single-neuron and region-level activity prediction, forward prediction, and behavior decoding.
arXiv Detail & Related papers (2024-07-19T21:05:28Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
Brain decoding aims to reconstruct stimuli from acquired brain signals.
Currently, brain decoding is confined to a per-subject-per-model paradigm.
We present MindBridge, that achieves cross-subject brain decoding by employing only one model.
arXiv Detail & Related papers (2024-04-11T15:46:42Z) - Aligning brain functions boosts the decoding of visual semantics in
novel subjects [3.226564454654026]
We propose to boost brain decoding by aligning brain responses to videos and static images across subjects.
Our method improves out-of-subject decoding performance by up to 75%.
It also outperforms classical single-subject approaches when fewer than 100 minutes of data is available for the tested subject.
arXiv Detail & Related papers (2023-12-11T15:55:20Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
We propose a hierarchical knowledge-enhanced pre-training framework for the universal brain MRI diagnosis, termed as UniBrain.
Specifically, UniBrain leverages a large-scale dataset of 24,770 imaging-report pairs from routine diagnostics.
arXiv Detail & Related papers (2023-09-13T09:22:49Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
We propose a new incomplete multimodal data integration approach that employs transformers and generative adversarial networks.
We apply our new method to predict cognitive degeneration and disease outcomes using the multimodal imaging genetic data from Alzheimer's Disease Neuroimaging Initiative cohort.
arXiv Detail & Related papers (2023-05-25T16:29:16Z) - Deep learning reveals the common spectrum underlying multiple brain
disorders in youth and elders from brain functional networks [53.257804915263165]
Brain disorders in the early and late life of humans potentially share pathological alterations in brain functions.
Key evidence from neuroimaging data for pathological commonness remains unrevealed.
We build a deep learning model, using multi-site functional magnetic resonance imaging data, for classifying 5 different brain disorders from healthy controls.
arXiv Detail & Related papers (2023-02-23T09:22:05Z) - Towards a Neural Model for Serial Order in Frontal Cortex: a Brain
Theory from Memory Development to Higher-Level Cognition [53.816853325427424]
We propose that the immature prefrontal cortex (PFC) use its primary functionality of detecting hierarchical patterns in temporal signals.
Our hypothesis is that the PFC detects the hierarchical structure in temporal sequences in the form of ordinal patterns and use them to index information hierarchically in different parts of the brain.
By doing so, it gives the tools to the language-ready brain for manipulating abstract knowledge and planning temporally ordered information.
arXiv Detail & Related papers (2020-05-22T14:29:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.