Proximity Matters: Local Proximity Preserved Balancing for Treatment Effect Estimation
- URL: http://arxiv.org/abs/2407.01111v1
- Date: Mon, 1 Jul 2024 09:20:26 GMT
- Title: Proximity Matters: Local Proximity Preserved Balancing for Treatment Effect Estimation
- Authors: Hao Wang, Zhichao Chen, Yuan Shen, Jiajun Fan, Zhaoran Liu, Degui Yang, Xinggao Liu, Haoxuan Li,
- Abstract summary: Heterogeneous treatment effect (HTE) estimation from observational data poses significant challenges due to treatment selection bias.
Existing methods address this bias by minimizing distribution discrepancies between treatment groups in latent space, focusing on global alignment.
We propose Proximity-aware Counterfactual Regression (PCR) to exploit proximity for representation balancing within the HTE estimation context.
- Score: 25.941696352770272
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Heterogeneous treatment effect (HTE) estimation from observational data poses significant challenges due to treatment selection bias. Existing methods address this bias by minimizing distribution discrepancies between treatment groups in latent space, focusing on global alignment. However, the fruitful aspect of local proximity, where similar units exhibit similar outcomes, is often overlooked. In this study, we propose Proximity-aware Counterfactual Regression (PCR) to exploit proximity for representation balancing within the HTE estimation context. Specifically, we introduce a local proximity preservation regularizer based on optimal transport to depict the local proximity in discrepancy calculation. Furthermore, to overcome the curse of dimensionality that renders the estimation of discrepancy ineffective, exacerbated by limited data availability for HTE estimation, we develop an informative subspace projector, which trades off minimal distance precision for improved sample complexity. Extensive experiments demonstrate that PCR accurately matches units across different treatment groups, effectively mitigates treatment selection bias, and significantly outperforms competitors. Code is available at https://anonymous.4open.science/status/ncr-B697.
Related papers
- Stable Heterogeneous Treatment Effect Estimation across Out-of-Distribution Populations [27.163528362979594]
Heterogeneous treatment effect (HTE) estimation is vital for understanding the change of treatment effect across individuals or groups.
Most existing HTE estimation methods focus on addressing selection bias induced by imbalanced distributions of confounders between treated and control units.
In real-world applications, where population distributions are subject to continuous changes, there is an urgent need for stable HTE estimation across out-of-distribution populations.
arXiv Detail & Related papers (2024-07-03T13:03:51Z) - Optimal Transport for Treatment Effect Estimation [42.50410909962438]
Estimating conditional average treatment effect from observational data is highly challenging due to the existence of treatment selection bias.
Prevalent methods mitigate this issue by aligning distributions of different treatment groups in the latent space.
We propose a principled approach named Entire Space CounterFactual Regression (ESCFR), which is a new take on optimal transport in the context of causality.
arXiv Detail & Related papers (2023-10-27T17:22:45Z) - DESCN: Deep Entire Space Cross Networks for Individual Treatment Effect
Estimation [7.060064266376701]
Causal Inference has wide applications in various areas such as E-commerce and precision medicine.
This paper proposes Deep Entire Space Cross Networks (DESCN) to model treatment effects from an end-to-end perspective.
arXiv Detail & Related papers (2022-07-19T01:25:31Z) - Escaping Saddle Points with Bias-Variance Reduced Local Perturbed SGD
for Communication Efficient Nonconvex Distributed Learning [58.79085525115987]
Local methods are one of the promising approaches to reduce communication time.
We show that the communication complexity is better than non-local methods when the local datasets is smaller than the smoothness local loss.
arXiv Detail & Related papers (2022-02-12T15:12:17Z) - Treatment Effect Risk: Bounds and Inference [58.442274475425144]
Since the average treatment effect measures the change in social welfare, even if positive, there is a risk of negative effect on, say, some 10% of the population.
In this paper we consider how to nonetheless assess this important risk measure, formalized as the conditional value at risk (CVaR) of the ITE distribution.
Some bounds can also be interpreted as summarizing a complex CATE function into a single metric and are of interest independently of being a bound.
arXiv Detail & Related papers (2022-01-15T17:21:26Z) - Assessment of Treatment Effect Estimators for Heavy-Tailed Data [70.72363097550483]
A central obstacle in the objective assessment of treatment effect (TE) estimators in randomized control trials (RCTs) is the lack of ground truth (or validation set) to test their performance.
We provide a novel cross-validation-like methodology to address this challenge.
We evaluate our methodology across 709 RCTs implemented in the Amazon supply chain.
arXiv Detail & Related papers (2021-12-14T17:53:01Z) - Distributionally Robust Local Non-parametric Conditional Estimation [22.423052432220235]
We propose a new distributionally robust estimator that generates non-parametric local estimates.
We show that despite being generally intractable, the local estimator can be efficiently found via convex optimization.
Experiments with synthetic and MNIST datasets show the competitive performance of this new class of estimators.
arXiv Detail & Related papers (2020-10-12T00:11:17Z) - Statistical control for spatio-temporal MEG/EEG source imaging with
desparsified multi-task Lasso [102.84915019938413]
Non-invasive techniques like magnetoencephalography (MEG) or electroencephalography (EEG) offer promise of non-invasive techniques.
The problem of source localization, or source imaging, poses however a high-dimensional statistical inference challenge.
We propose an ensemble of desparsified multi-task Lasso (ecd-MTLasso) to deal with this problem.
arXiv Detail & Related papers (2020-09-29T21:17:16Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
Survival data are frequently encountered across diverse medical applications, i.e., drug development, risk profiling, and clinical trials.
We propose a theoretically grounded unified framework for counterfactual inference applicable to survival outcomes.
arXiv Detail & Related papers (2020-06-14T01:15:00Z) - Regret Minimization for Causal Inference on Large Treatment Space [21.957539112375496]
We propose a network architecture and a regularizer that extracts a debiased representation from biased observational data.
Our proposed loss minimizes a classification error of whether or not the action is relatively good for the individual target.
arXiv Detail & Related papers (2020-06-10T02:19:48Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
We study estimation of individual-level causal effects, such as a single patient's response to alternative medication.
We devise representation learning algorithms that minimize our bound, by regularizing the representation's induced treatment group distance.
We extend these algorithms to simultaneously learn a weighted representation to further reduce treatment group distances.
arXiv Detail & Related papers (2020-01-21T10:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.