RMS-FlowNet++: Efficient and Robust Multi-Scale Scene Flow Estimation for Large-Scale Point Clouds
- URL: http://arxiv.org/abs/2407.01129v1
- Date: Mon, 1 Jul 2024 09:51:17 GMT
- Title: RMS-FlowNet++: Efficient and Robust Multi-Scale Scene Flow Estimation for Large-Scale Point Clouds
- Authors: Ramy Battrawy, René Schuster, Didier Stricker,
- Abstract summary: RMS-FlowNet++ is a novel end-to-end learning-based architecture for accurate and efficient scene flow estimation.
Our architecture provides a faster prediction than state-of-the-art methods, avoids high memory requirements and enables efficient scene flow on dense point clouds of more than 250K points at once.
- Score: 15.138542932078916
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The proposed RMS-FlowNet++ is a novel end-to-end learning-based architecture for accurate and efficient scene flow estimation that can operate on high-density point clouds. For hierarchical scene f low estimation, existing methods rely on expensive Farthest-Point-Sampling (FPS) to sample the scenes, must find large correspondence sets across the consecutive frames and/or must search for correspondences at a full input resolution. While this can improve the accuracy, it reduces the overall efficiency of these methods and limits their ability to handle large numbers of points due to memory requirements. In contrast to these methods, our architecture is based on an efficient design for hierarchical prediction of multi-scale scene flow. To this end, we develop a special flow embedding block that has two advantages over the current methods: First, a smaller correspondence set is used, and second, the use of Random-Sampling (RS) is possible. In addition, our architecture does not need to search for correspondences at a full input resolution. Exhibiting high accuracy, our RMS-FlowNet++ provides a faster prediction than state-of-the-art methods, avoids high memory requirements and enables efficient scene flow on dense point clouds of more than 250K points at once. Our comprehensive experiments verify the accuracy of RMS FlowNet++ on the established FlyingThings3D data set with different point cloud densities and validate our design choices. Furthermore, we demonstrate that our model has a competitive ability to generalize to the real-world scenes of the KITTI data set without fine-tuning.
Related papers
- OptFlow: Fast Optimization-based Scene Flow Estimation without
Supervision [6.173968909465726]
We present OptFlow, a fast optimization-based scene flow estimation method.
It achieves state-of-the-art performance for scene flow estimation on popular autonomous driving benchmarks.
arXiv Detail & Related papers (2024-01-04T21:47:56Z) - GMSF: Global Matching Scene Flow [17.077134204089536]
We tackle the task of scene flow estimation from point clouds.
Given a source and a target point cloud, the objective is to estimate a translation from each point in the source point cloud to the target.
We propose a significantly simpler single-scale one-shot global matching to address the problem.
arXiv Detail & Related papers (2023-05-27T10:04:21Z) - PointFlowHop: Green and Interpretable Scene Flow Estimation from
Consecutive Point Clouds [49.7285297470392]
An efficient 3D scene flow estimation method called PointFlowHop is proposed in this work.
PointFlowHop takes two consecutive point clouds and determines the 3D flow vectors for every point in the first point cloud.
It decomposes the scene flow estimation task into a set of subtasks, including ego-motion compensation, object association and object-wise motion estimation.
arXiv Detail & Related papers (2023-02-27T23:06:01Z) - CloudAttention: Efficient Multi-Scale Attention Scheme For 3D Point
Cloud Learning [81.85951026033787]
We set transformers in this work and incorporate them into a hierarchical framework for shape classification and part and scene segmentation.
We also compute efficient and dynamic global cross attentions by leveraging sampling and grouping at each iteration.
The proposed hierarchical model achieves state-of-the-art shape classification in mean accuracy and yields results on par with the previous segmentation methods.
arXiv Detail & Related papers (2022-07-31T21:39:15Z) - What Matters for 3D Scene Flow Network [44.02710380584977]
3D scene flow estimation from point clouds is a low-level 3D motion perception task in computer vision.
We propose a novel all-to-all flow embedding layer with backward reliability validation during the initial scene flow estimation.
Our proposed model surpasses all existing methods by at least 38.2% on FlyingThings3D dataset and 24.7% on KITTI Scene Flow dataset for EPE3D metric.
arXiv Detail & Related papers (2022-07-19T09:27:05Z) - Bi-PointFlowNet: Bidirectional Learning for Point Cloud Based Scene Flow
Estimation [3.1869033681682124]
This paper presents a novel scene flow estimation architecture using bidirectional flow embedding layers.
The proposed bidirectional layer learns features along both forward and backward directions, enhancing the estimation performance.
In addition, hierarchical feature extraction and warping improve the performance and reduce computational overhead.
arXiv Detail & Related papers (2022-07-15T15:14:53Z) - FlowNAS: Neural Architecture Search for Optical Flow Estimation [65.44079917247369]
We propose a neural architecture search method named FlowNAS to automatically find the better encoder architecture for flow estimation task.
Experimental results show that the discovered architecture with the weights inherited from the super-network achieves 4.67% F1-all error on KITTI.
arXiv Detail & Related papers (2022-07-04T09:05:25Z) - RMS-FlowNet: Efficient and Robust Multi-Scale Scene Flow Estimation for
Large-Scale Point Clouds [13.62166506575236]
RMS-FlowNet is a novel end-to-end learning-based architecture for accurate and efficient scene flow estimation.
We show that our model presents a competitive ability to generalize towards the real-world scenes of KITTI data set without fine-tuning.
arXiv Detail & Related papers (2022-04-01T11:02:58Z) - SCTN: Sparse Convolution-Transformer Network for Scene Flow Estimation [71.2856098776959]
Estimating 3D motions for point clouds is challenging, since a point cloud is unordered and its density is significantly non-uniform.
We propose a novel architecture named Sparse Convolution-Transformer Network (SCTN) that equips the sparse convolution with the transformer.
We show that the learned relation-based contextual information is rich and helpful for matching corresponding points, benefiting scene flow estimation.
arXiv Detail & Related papers (2021-05-10T15:16:14Z) - Learning Optical Flow from a Few Matches [67.83633948984954]
We show that the dense correlation volume representation is redundant and accurate flow estimation can be achieved with only a fraction of elements in it.
Experiments show that our method can reduce computational cost and memory use significantly, while maintaining high accuracy.
arXiv Detail & Related papers (2021-04-05T21:44:00Z) - FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation [81.76975488010213]
Dense optical flow estimation plays a key role in many robotic vision tasks.
Current networks often occupy large number of parameters and require heavy computation costs.
Our proposed FastFlowNet works in the well-known coarse-to-fine manner with following innovations.
arXiv Detail & Related papers (2021-03-08T03:09:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.