Cross-Lingual Transfer Learning for Speech Translation
- URL: http://arxiv.org/abs/2407.01130v1
- Date: Mon, 1 Jul 2024 09:51:48 GMT
- Title: Cross-Lingual Transfer Learning for Speech Translation
- Authors: Rao Ma, Yassir Fathullah, Mengjie Qian, Siyuan Tang, Mark Gales, Kate Knill,
- Abstract summary: Zero-shot cross-lingual transfer has been demonstrated on a range of NLP tasks.
We explore whether speech-based models exhibit the same transfer capability.
- Score: 7.802021866251242
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There has been increasing interest in building multilingual foundation models for NLP and speech research. Zero-shot cross-lingual transfer has been demonstrated on a range of NLP tasks where a model fine-tuned on task-specific data in one language yields performance gains in other languages. Here, we explore whether speech-based models exhibit the same transfer capability. Using Whisper as an example of a multilingual speech foundation model, we examine the utterance representation generated by the speech encoder. Despite some language-sensitive information being preserved in the audio embedding, words from different languages are mapped to a similar semantic space, as evidenced by a high recall rate in a speech-to-speech retrieval task. Leveraging this shared embedding space, zero-shot cross-lingual transfer is demonstrated in speech translation. When the Whisper model is fine-tuned solely on English-to-Chinese translation data, performance improvements are observed for input utterances in other languages. Additionally, experiments on low-resource languages show that Whisper can perform speech translation for utterances from languages unseen during pre-training by utilizing cross-lingual representations.
Related papers
- TransVIP: Speech to Speech Translation System with Voice and Isochrony Preservation [97.54885207518946]
We introduce a novel model framework TransVIP that leverages diverse datasets in a cascade fashion.
We propose two separated encoders to preserve the speaker's voice characteristics and isochrony from the source speech during the translation process.
Our experiments on the French-English language pair demonstrate that our model outperforms the current state-of-the-art speech-to-speech translation model.
arXiv Detail & Related papers (2024-05-28T04:11:37Z) - TranSentence: Speech-to-speech Translation via Language-agnostic
Sentence-level Speech Encoding without Language-parallel Data [44.83532231917504]
TranSentence is a novel speech-to-speech translation without language-parallel speech data.
We train our model to generate speech based on the encoded embedding obtained from a language-agnostic sentence-level speech encoder.
We extend TranSentence to multilingual speech-to-speech translation.
arXiv Detail & Related papers (2024-01-17T11:52:40Z) - Towards a Deep Understanding of Multilingual End-to-End Speech
Translation [52.26739715012842]
We analyze representations learnt in a multilingual end-to-end speech translation model trained over 22 languages.
We derive three major findings from our analysis.
arXiv Detail & Related papers (2023-10-31T13:50:55Z) - Textless Unit-to-Unit training for Many-to-Many Multilingual Speech-to-Speech Translation [65.13824257448564]
This paper proposes a textless training method for many-to-many multilingual speech-to-speech translation.
By treating the speech units as pseudo-text, we can focus on the linguistic content of the speech.
We demonstrate that the proposed UTUT model can be effectively utilized not only for Speech-to-Speech Translation (S2ST) but also for multilingual Text-to-Speech Synthesis (T2S) and Text-to-Speech Translation (T2ST)
arXiv Detail & Related papers (2023-08-03T15:47:04Z) - AudioPaLM: A Large Language Model That Can Speak and Listen [79.44757696533709]
We introduce AudioPaLM, a large language model for speech understanding and generation.
AudioPaLM fuses text-based and speech-based language models.
It can process and generate text and speech with applications including speech recognition and speech-to-speech translation.
arXiv Detail & Related papers (2023-06-22T14:37:54Z) - Bridging the Modality Gap for Speech-to-Text Translation [57.47099674461832]
End-to-end speech translation aims to translate speech in one language into text in another language via an end-to-end way.
Most existing methods employ an encoder-decoder structure with a single encoder to learn acoustic representation and semantic information simultaneously.
We propose a Speech-to-Text Adaptation for Speech Translation model which aims to improve the end-to-end model performance by bridging the modality gap between speech and text.
arXiv Detail & Related papers (2020-10-28T12:33:04Z) - Consecutive Decoding for Speech-to-text Translation [51.155661276936044]
COnSecutive Transcription and Translation (COSTT) is an integral approach for speech-to-text translation.
The key idea is to generate source transcript and target translation text with a single decoder.
Our method is verified on three mainstream datasets.
arXiv Detail & Related papers (2020-09-21T10:10:45Z) - CSTNet: Contrastive Speech Translation Network for Self-Supervised
Speech Representation Learning [11.552745999302905]
More than half of the 7,000 languages in the world are in imminent danger of going extinct.
It is relatively easy to obtain textual translations corresponding to speech.
We construct a convolutional neural network audio encoder capable of extracting linguistic representations from speech.
arXiv Detail & Related papers (2020-06-04T12:21:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.