Multi-View Black-Box Physical Attacks on Infrared Pedestrian Detectors Using Adversarial Infrared Grid
- URL: http://arxiv.org/abs/2407.01168v2
- Date: Mon, 8 Jul 2024 14:17:26 GMT
- Title: Multi-View Black-Box Physical Attacks on Infrared Pedestrian Detectors Using Adversarial Infrared Grid
- Authors: Kalibinuer Tiliwalidi, Chengyin Hu, Weiwen Shi,
- Abstract summary: Infrared object detectors are vital in modern technological applications but are susceptible to adversarial attacks, posing significant security threats.
Previous studies using physical perturbations like light bulb arrays for white-box attacks, or hot and cold patches for black-box attacks, have proven impractical or limited in multi-view support.
We propose the Adversarial Infrared Grid (AdvGrid), which models perturbations in a grid format and uses a genetic algorithm for black-box optimization.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While extensive research exists on physical adversarial attacks within the visible spectrum, studies on such techniques in the infrared spectrum are limited. Infrared object detectors are vital in modern technological applications but are susceptible to adversarial attacks, posing significant security threats. Previous studies using physical perturbations like light bulb arrays and aerogels for white-box attacks, or hot and cold patches for black-box attacks, have proven impractical or limited in multi-view support. To address these issues, we propose the Adversarial Infrared Grid (AdvGrid), which models perturbations in a grid format and uses a genetic algorithm for black-box optimization. These perturbations are cyclically applied to various parts of a pedestrian's clothing to facilitate multi-view black-box physical attacks on infrared pedestrian detectors. Extensive experiments validate AdvGrid's effectiveness, stealthiness, and robustness. The method achieves attack success rates of 80.00\% in digital environments and 91.86\% in physical environments, outperforming baseline methods. Additionally, the average attack success rate exceeds 50\% against mainstream detectors, demonstrating AdvGrid's robustness. Our analyses include ablation studies, transfer attacks, and adversarial defenses, confirming the method's superiority.
Related papers
- Physical Backdoor: Towards Temperature-based Backdoor Attacks in the Physical World [47.76657100827679]
We introduce two novel types of backdoor attacks on thermal infrared object detection (TIOD)
Key factors influencing trigger design include temperature, size, material, and concealment.
In the digital realm, we evaluate our approach using benchmark datasets for TIOD, achieving an Attack Success Rate (ASR) of up to 98.21%.
arXiv Detail & Related papers (2024-04-30T10:03:26Z) - Adversarial Infrared Geometry: Using Geometry to Perform Adversarial
Attack against Infrared Pedestrian Detectors [0.0]
We propose a novel infrared physical attack termed Adrial Infrared Geometry (textversabfAdvIG)
In digital attack experiments, line, triangle, and ellipse patterns achieve attack success rates of 93.1%, 86.8%, and 100.0%, respectively.
On average, the line, triangle, and ellipse achieve attack success rates of 61.1%, 61.2%, and 96.2%, respectively.
arXiv Detail & Related papers (2024-03-06T12:55:21Z) - Adversarial Infrared Curves: An Attack on Infrared Pedestrian Detectors
in the Physical World [0.0]
Existing approaches, like white-box infrared attacks using bulb boards and QR suits, lack realism and stealthiness.
We propose Adversarial Infrared Curves (AdvIC) to bridge these gaps.
Our experiments confirm AdvIC's effectiveness, achieving 94.8% and 67.2% attack success rates for digital and physical attacks, respectively.
arXiv Detail & Related papers (2023-12-21T12:21:57Z) - Two-stage optimized unified adversarial patch for attacking
visible-infrared cross-modal detectors in the physical world [0.0]
This work introduces the Two-stage Optimized Unified Adversarial Patch (TOUAP) designed for performing attacks against visible-infrared cross-modal detectors in real-world, black-box settings.
arXiv Detail & Related papers (2023-12-04T10:25:34Z) - Adversarial Infrared Blocks: A Multi-view Black-box Attack to Thermal
Infrared Detectors in Physical World [4.504479592538401]
We propose a novel physical attack called adversarial infrared blocks (AdvIB)
By optimizing the physical parameters of the adversarial infrared blocks, this method can execute a stealthy black-box attack on thermal imaging system from various angles.
For stealthiness, our method involves attaching the adversarial infrared block to the inside of clothing, enhancing its stealthiness.
arXiv Detail & Related papers (2023-04-21T02:53:56Z) - Physically Adversarial Infrared Patches with Learnable Shapes and
Locations [1.1172382217477126]
We propose a physically feasible infrared attack method called "adversarial infrared patches"
Considering the imaging mechanism of infrared cameras by capturing objects' thermal radiation, adversarial infrared patches conduct attacks by attaching a patch of thermal insulation materials on the target object to manipulate its thermal distribution.
We verify adversarial infrared patches in different object detection tasks with various object detectors.
arXiv Detail & Related papers (2023-03-24T09:11:36Z) - HOTCOLD Block: Fooling Thermal Infrared Detectors with a Novel Wearable
Design [60.97064635095259]
textscHotCold Block is a novel physical attack for infrared detectors that hide persons utilizing the wearable Warming Paste and Cooling Paste.
By attaching these readily available temperature-controlled materials to the body, textscHotCold Block evades human eyes efficiently.
arXiv Detail & Related papers (2022-12-12T05:23:11Z) - Towards Lightweight Black-Box Attacks against Deep Neural Networks [70.9865892636123]
We argue that black-box attacks can pose practical attacks where only several test samples are available.
As only a few samples are required, we refer to these attacks as lightweight black-box attacks.
We propose Error TransFormer (ETF) for lightweight attacks to mitigate the approximation error.
arXiv Detail & Related papers (2022-09-29T14:43:03Z) - Parallel Rectangle Flip Attack: A Query-based Black-box Attack against
Object Detection [89.08832589750003]
We propose a Parallel Rectangle Flip Attack (PRFA) via random search to avoid sub-optimal detection near the attacked region.
Our method can effectively and efficiently attack various popular object detectors, including anchor-based and anchor-free, and generate transferable adversarial examples.
arXiv Detail & Related papers (2022-01-22T06:00:17Z) - AdvMind: Inferring Adversary Intent of Black-Box Attacks [66.19339307119232]
We present AdvMind, a new class of estimation models that infer the adversary intent of black-box adversarial attacks in a robust manner.
On average AdvMind detects the adversary intent with over 75% accuracy after observing less than 3 query batches.
arXiv Detail & Related papers (2020-06-16T22:04:31Z) - Spanning Attack: Reinforce Black-box Attacks with Unlabeled Data [96.92837098305898]
Black-box attacks aim to craft adversarial perturbations by querying input-output pairs of machine learning models.
Black-box attacks often suffer from the issue of query inefficiency due to the high dimensionality of the input space.
We propose a novel technique called the spanning attack, which constrains adversarial perturbations in a low-dimensional subspace via spanning an auxiliary unlabeled dataset.
arXiv Detail & Related papers (2020-05-11T05:57:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.