Fast and Efficient: Mask Neural Fields for 3D Scene Segmentation
- URL: http://arxiv.org/abs/2407.01220v2
- Date: Mon, 25 Nov 2024 03:15:56 GMT
- Title: Fast and Efficient: Mask Neural Fields for 3D Scene Segmentation
- Authors: Zihan Gao, Lingling Li, Licheng Jiao, Fang Liu, Xu Liu, Wenping Ma, Yuwei Guo, Shuyuan Yang,
- Abstract summary: This paper presents MaskField, which enables efficient 3D open-vocabulary segmentation with neural fields from a novel perspective.
MaskField decomposes the distillation of mask and semantic features from foundation models by formulating a mask feature field and queries.
Our experiments show that MaskField not only surpasses prior state-of-the-art methods but also achieves remarkably fast convergence.
- Score: 47.08813064337934
- License:
- Abstract: Understanding 3D scenes is a crucial challenge in computer vision research with applications spanning multiple domains. Recent advancements in distilling 2D vision-language foundation models into neural fields, like NeRF and 3DGS, enable open-vocabulary segmentation of 3D scenes from 2D multi-view images without the need for precise 3D annotations. However, while effective, these methods typically rely on the per-pixel distillation of high-dimensional CLIP features, introducing ambiguity and necessitating complex regularization strategies, which adds inefficiency during training. This paper presents MaskField, which enables efficient 3D open-vocabulary segmentation with neural fields from a novel perspective. Unlike previous methods, MaskField decomposes the distillation of mask and semantic features from foundation models by formulating a mask feature field and queries. MaskField overcomes ambiguous object boundaries by naturally introducing SAM segmented object shapes without extra regularization during training. By circumventing the direct handling of dense high-dimensional CLIP features during training, MaskField is particularly compatible with explicit scene representations like 3DGS. Our extensive experiments show that MaskField not only surpasses prior state-of-the-art methods but also achieves remarkably fast convergence. We hope that MaskField will inspire further exploration into how neural fields can be trained to comprehend 3D scenes from 2D models.
Related papers
- XMask3D: Cross-modal Mask Reasoning for Open Vocabulary 3D Semantic Segmentation [72.12250272218792]
We propose a more meticulous mask-level alignment between 3D features and the 2D-text embedding space through a cross-modal mask reasoning framework, XMask3D.
We integrate 3D global features as implicit conditions into the pre-trained 2D denoising UNet, enabling the generation of segmentation masks.
The generated 2D masks are employed to align mask-level 3D representations with the vision-language feature space, thereby augmenting the open vocabulary capability of 3D geometry embeddings.
arXiv Detail & Related papers (2024-11-20T12:02:12Z) - Triple Point Masking [49.39218611030084]
Existing 3D mask learning methods encounter performance bottlenecks under limited data.
We introduce a triple point masking scheme, named TPM, which serves as a scalable framework for pre-training of masked autoencoders.
Extensive experiments show that the four baselines equipped with the proposed TPM achieve comprehensive performance improvements on various downstream tasks.
arXiv Detail & Related papers (2024-09-26T05:33:30Z) - EmbodiedSAM: Online Segment Any 3D Thing in Real Time [61.2321497708998]
Embodied tasks require the agent to fully understand 3D scenes simultaneously with its exploration.
An online, real-time, fine-grained and highly-generalized 3D perception model is desperately needed.
arXiv Detail & Related papers (2024-08-21T17:57:06Z) - DiscoNeRF: Class-Agnostic Object Field for 3D Object Discovery [46.711276257688326]
NeRFs have become a powerful tool for modeling 3D scenes from multiple images.
Previous approaches to 3D segmentation of NeRFs either require user interaction to isolate a single object, or they rely on 2D semantic masks with a limited number of classes for supervision.
We propose a method that is robust to inconsistent segmentations and successfully decomposes the scene into a set of objects of any class.
arXiv Detail & Related papers (2024-08-19T12:07:24Z) - Efficient 3D Instance Mapping and Localization with Neural Fields [39.73128916618561]
We tackle the problem of learning an implicit scene representation for 3D instance segmentation from a sequence of posed RGB images.
We introduce 3DIML, a novel framework that efficiently learns a neural label field which can render 3D instance segmentation masks from novel viewpoints.
arXiv Detail & Related papers (2024-03-28T19:25:25Z) - Self-supervised Pre-training with Masked Shape Prediction for 3D Scene
Understanding [106.0876425365599]
Masked Shape Prediction (MSP) is a new framework to conduct masked signal modeling in 3D scenes.
MSP uses the essential 3D semantic cue, i.e., geometric shape, as the prediction target for masked points.
arXiv Detail & Related papers (2023-05-08T20:09:19Z) - MM-3DScene: 3D Scene Understanding by Customizing Masked Modeling with
Informative-Preserved Reconstruction and Self-Distilled Consistency [120.9499803967496]
We propose a novel informative-preserved reconstruction, which explores local statistics to discover and preserve the representative structured points.
Our method can concentrate on modeling regional geometry and enjoy less ambiguity for masked reconstruction.
By combining informative-preserved reconstruction on masked areas and consistency self-distillation from unmasked areas, a unified framework called MM-3DScene is yielded.
arXiv Detail & Related papers (2022-12-20T01:53:40Z) - Panoptic Lifting for 3D Scene Understanding with Neural Fields [32.59498558663363]
We propose a novel approach for learning panoptic 3D representations from images of in-the-wild scenes.
Our method requires only machine-generated 2D panoptic segmentation masks inferred from a pre-trained network.
Experimental results validate our approach on the challenging Hypersim, Replica, and ScanNet datasets.
arXiv Detail & Related papers (2022-12-19T19:15:36Z) - Semantic Implicit Neural Scene Representations With Semi-Supervised
Training [47.61092265963234]
We show that implicit neural scene representations can be leveraged to perform per-point semantic segmentation.
Our method is simple, general, and only requires a few tens of labeled 2D segmentation masks.
We explore two novel applications for this semantically aware implicit neural scene representation.
arXiv Detail & Related papers (2020-03-28T00:43:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.