DeepiSign-G: Generic Watermark to Stamp Hidden DNN Parameters for Self-contained Tracking
- URL: http://arxiv.org/abs/2407.01260v1
- Date: Mon, 1 Jul 2024 13:15:38 GMT
- Title: DeepiSign-G: Generic Watermark to Stamp Hidden DNN Parameters for Self-contained Tracking
- Authors: Alsharif Abuadbba, Nicholas Rhodes, Kristen Moore, Bushra Sabir, Shuo Wang, Yansong Gao,
- Abstract summary: DeepiSign-G is a versatile watermarking approach designed for comprehensive verification of leading DNN architectures, including CNNs and RNNs.
Unlike traditional hashing techniques, DeepiSign-G allows substantial metadata incorporation directly within the model, enabling detailed, self-contained tracking and verification.
We demonstrate DeepiSign-G's applicability across various architectures, including CNN models (VGG, ResNets, DenseNet) and RNNs (Text sentiment classifiers)
- Score: 15.394110881491773
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning solutions in critical domains like autonomous vehicles, facial recognition, and sentiment analysis require caution due to the severe consequences of errors. Research shows these models are vulnerable to adversarial attacks, such as data poisoning and neural trojaning, which can covertly manipulate model behavior, compromising reliability and safety. Current defense strategies like watermarking have limitations: they fail to detect all model modifications and primarily focus on attacks on CNNs in the image domain, neglecting other critical architectures like RNNs. To address these gaps, we introduce DeepiSign-G, a versatile watermarking approach designed for comprehensive verification of leading DNN architectures, including CNNs and RNNs. DeepiSign-G enhances model security by embedding an invisible watermark within the Walsh-Hadamard transform coefficients of the model's parameters. This watermark is highly sensitive and fragile, ensuring prompt detection of any modifications. Unlike traditional hashing techniques, DeepiSign-G allows substantial metadata incorporation directly within the model, enabling detailed, self-contained tracking and verification. We demonstrate DeepiSign-G's applicability across various architectures, including CNN models (VGG, ResNets, DenseNet) and RNNs (Text sentiment classifier). We experiment with four popular datasets: VGG Face, CIFAR10, GTSRB Traffic Sign, and Large Movie Review. We also evaluate DeepiSign-G under five potential attacks. Our comprehensive evaluation confirms that DeepiSign-G effectively detects these attacks without compromising CNN and RNN model performance, highlighting its efficacy as a robust security measure for deep learning applications. Detection of integrity breaches is nearly perfect, while hiding only a bit in approximately 1% of the Walsh-Hadamard coefficients.
Related papers
- Lazy Layers to Make Fine-Tuned Diffusion Models More Traceable [70.77600345240867]
A novel arbitrary-in-arbitrary-out (AIAO) strategy makes watermarks resilient to fine-tuning-based removal.
Unlike the existing methods of designing a backdoor for the input/output space of diffusion models, in our method, we propose to embed the backdoor into the feature space of sampled subpaths.
Our empirical studies on the MS-COCO, AFHQ, LSUN, CUB-200, and DreamBooth datasets confirm the robustness of AIAO.
arXiv Detail & Related papers (2024-05-01T12:03:39Z) - Securing Graph Neural Networks in MLaaS: A Comprehensive Realization of Query-based Integrity Verification [68.86863899919358]
We introduce a groundbreaking approach to protect GNN models in Machine Learning from model-centric attacks.
Our approach includes a comprehensive verification schema for GNN's integrity, taking into account both transductive and inductive GNNs.
We propose a query-based verification technique, fortified with innovative node fingerprint generation algorithms.
arXiv Detail & Related papers (2023-12-13T03:17:05Z) - Rethinking White-Box Watermarks on Deep Learning Models under Neural
Structural Obfuscation [24.07604618918671]
Copyright protection for deep neural networks (DNNs) is an urgent need for AI corporations.
White-box watermarking is believed to be accurate, credible and secure against most known watermark removal attacks.
We present the first systematic study on how the mainstream white-box watermarks are commonly vulnerable to neural structural obfuscation with textitdummy neurons.
arXiv Detail & Related papers (2023-03-17T02:21:41Z) - Untargeted Backdoor Watermark: Towards Harmless and Stealthy Dataset
Copyright Protection [69.59980270078067]
We explore the untargeted backdoor watermarking scheme, where the abnormal model behaviors are not deterministic.
We also discuss how to use the proposed untargeted backdoor watermark for dataset ownership verification.
arXiv Detail & Related papers (2022-09-27T12:56:56Z) - Watermarking Graph Neural Networks based on Backdoor Attacks [10.844454900508566]
We present a watermarking framework for Graph Neural Networks (GNNs) for both graph and node classification tasks.
Our framework can verify the ownership of GNN models with a very high probability (around $100%$) for both tasks.
arXiv Detail & Related papers (2021-10-21T09:59:59Z) - Exploring Structure Consistency for Deep Model Watermarking [122.38456787761497]
The intellectual property (IP) of Deep neural networks (DNNs) can be easily stolen'' by surrogate model attack.
We propose a new watermarking methodology, namely structure consistency'', based on which a new deep structure-aligned model watermarking algorithm is designed.
arXiv Detail & Related papers (2021-08-05T04:27:15Z) - Unveiling the potential of Graph Neural Networks for robust Intrusion
Detection [2.21481607673149]
We propose a novel Graph Neural Network (GNN) model to learn flow patterns of attacks structured as graphs.
Our model is able to maintain the same level of accuracy as in previous experiments, while state-of-the-art ML techniques degrade up to 50% their accuracy (F1-score) under adversarial attacks.
arXiv Detail & Related papers (2021-07-30T16:56:39Z) - Don't Forget to Sign the Gradients! [60.98885980669777]
GradSigns is a novel watermarking framework for deep neural networks (DNNs)
We present GradSigns, a novel watermarking framework for deep neural networks (DNNs)
arXiv Detail & Related papers (2021-03-05T14:24:32Z) - DeepiSign: Invisible Fragile Watermark to Protect the Integrityand
Authenticity of CNN [37.98139322456872]
We propose a self-contained tamper-proofing method, called DeepiSign, to ensure the integrity and authenticity of CNN models.
DeepiSign applies the idea of fragile invisible watermarking to securely embed a secret and its hash value into a CNN model.
Our theoretical analysis shows that DeepiSign can hide up to 1KB secret in each layer with minimal loss of the model's accuracy.
arXiv Detail & Related papers (2021-01-12T06:42:45Z) - Graph Backdoor [53.70971502299977]
We present GTA, the first backdoor attack on graph neural networks (GNNs)
GTA departs in significant ways: it defines triggers as specific subgraphs, including both topological structures and descriptive features.
It can be instantiated for both transductive (e.g., node classification) and inductive (e.g., graph classification) tasks.
arXiv Detail & Related papers (2020-06-21T19:45:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.