Bridging Smoothness and Approximation: Theoretical Insights into Over-Smoothing in Graph Neural Networks
- URL: http://arxiv.org/abs/2407.01281v2
- Date: Mon, 5 Aug 2024 15:50:32 GMT
- Title: Bridging Smoothness and Approximation: Theoretical Insights into Over-Smoothing in Graph Neural Networks
- Authors: Guangrui Yang, Jianfei Li, Ming Li, Han Feng, Ding-Xuan Zhou,
- Abstract summary: We explore the approximation theory of functions defined on graphs.
We establish a framework to assess the lower bounds of approximation for target functions using Graph Convolutional Networks (GCNs)
We show how the high-frequency energy of the output decays, an indicator of over-smoothing, in GCNs.
- Score: 12.001676605529626
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we explore the approximation theory of functions defined on graphs. Our study builds upon the approximation results derived from the $K$-functional. We establish a theoretical framework to assess the lower bounds of approximation for target functions using Graph Convolutional Networks (GCNs) and examine the over-smoothing phenomenon commonly observed in these networks. Initially, we introduce the concept of a $K$-functional on graphs, establishing its equivalence to the modulus of smoothness. We then analyze a typical type of GCN to demonstrate how the high-frequency energy of the output decays, an indicator of over-smoothing. This analysis provides theoretical insights into the nature of over-smoothing within GCNs. Furthermore, we establish a lower bound for the approximation of target functions by GCNs, which is governed by the modulus of smoothness of these functions. This finding offers a new perspective on the approximation capabilities of GCNs. In our numerical experiments, we analyze several widely applied GCNs and observe the phenomenon of energy decay. These observations corroborate our theoretical results on exponential decay order.
Related papers
- Revealing Decurve Flows for Generalized Graph Propagation [108.80758541147418]
This study addresses the limitations of the traditional analysis of message-passing, central to graph learning, by defining em textbfgeneralized propagation with directed and weighted graphs.
We include a preliminary exploration of learned propagation patterns in datasets, a first in the field.
arXiv Detail & Related papers (2024-02-13T14:13:17Z) - Neural Tangent Kernels Motivate Graph Neural Networks with
Cross-Covariance Graphs [94.44374472696272]
We investigate NTKs and alignment in the context of graph neural networks (GNNs)
Our results establish the theoretical guarantees on the optimality of the alignment for a two-layer GNN.
These guarantees are characterized by the graph shift operator being a function of the cross-covariance between the input and the output data.
arXiv Detail & Related papers (2023-10-16T19:54:21Z) - On the Ability of Graph Neural Networks to Model Interactions Between
Vertices [14.909298522361306]
Graph neural networks (GNNs) are widely used for modeling complex interactions between entities represented as vertices of a graph.
Despite recent efforts to theoretically analyze the expressive power of GNNs, a formal characterization of their ability to model interactions is lacking.
arXiv Detail & Related papers (2022-11-29T18:58:07Z) - Generalization Guarantee of Training Graph Convolutional Networks with
Graph Topology Sampling [83.77955213766896]
Graph convolutional networks (GCNs) have recently achieved great empirical success in learning graphstructured data.
To address its scalability issue, graph topology sampling has been proposed to reduce the memory and computational cost of training Gs.
This paper provides first theoretical justification of graph topology sampling in training (up to) three-layer GCNs.
arXiv Detail & Related papers (2022-07-07T21:25:55Z) - Convex Analysis of the Mean Field Langevin Dynamics [49.66486092259375]
convergence rate analysis of the mean field Langevin dynamics is presented.
$p_q$ associated with the dynamics allows us to develop a convergence theory parallel to classical results in convex optimization.
arXiv Detail & Related papers (2022-01-25T17:13:56Z) - Wide Graph Neural Networks: Aggregation Provably Leads to Exponentially
Trainability Loss [17.39060566854841]
Graph convolutional networks (GCNs) and their variants have achieved great success in dealing with graph-structured data.
It is well known that deep GCNs will suffer from over-smoothing problem.
Few theoretical analyses have been conducted to study the expressivity and trainability of deep GCNs.
arXiv Detail & Related papers (2021-03-03T11:06:12Z) - Revisiting Graph Convolutional Network on Semi-Supervised Node
Classification from an Optimization Perspective [10.178145000390671]
Graph convolutional networks (GCNs) have achieved promising performance on various graph-based tasks.
However they suffer from over-smoothing when stacking more layers.
We present a quantitative study on this observation and develop novel insights towards the deeper GCN.
arXiv Detail & Related papers (2020-09-24T03:36:43Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
Graph convolutions perform neighborhood aggregation and represent one of the most important graph operations.
Several recent studies attribute this performance deterioration to the over-smoothing issue.
We propose Deep Adaptive Graph Neural Network (DAGNN) to adaptively incorporate information from large receptive fields.
arXiv Detail & Related papers (2020-07-18T01:11:14Z) - Scattering GCN: Overcoming Oversmoothness in Graph Convolutional
Networks [0.0]
Graph convolutional networks (GCNs) have shown promising results in processing graph data by extracting structure-aware features.
Here, we propose to augment conventional GCNs with geometric scattering transforms and residual convolutions.
The former enables band-pass filtering of graph signals, thus alleviating the so-called oversmoothing often encountered in GCNs.
arXiv Detail & Related papers (2020-03-18T18:03:08Z) - Infinitely Wide Graph Convolutional Networks: Semi-supervised Learning
via Gaussian Processes [144.6048446370369]
Graph convolutional neural networks(GCNs) have recently demonstrated promising results on graph-based semi-supervised classification.
We propose a GP regression model via GCNs(GPGC) for graph-based semi-supervised learning.
We conduct extensive experiments to evaluate GPGC and demonstrate that it outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2020-02-26T10:02:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.