Adaptive variational quantum computing approaches for Green's functions and nonlinear susceptibilities
- URL: http://arxiv.org/abs/2407.01313v2
- Date: Wed, 4 Sep 2024 19:48:43 GMT
- Title: Adaptive variational quantum computing approaches for Green's functions and nonlinear susceptibilities
- Authors: Martin Mootz, Thomas Iadecola, Yong-Xin Yao,
- Abstract summary: We present and benchmark quantum computing approaches for calculating real-time single-particle Green's functions and nonlinear susceptibilities of Hamiltonian systems.
The approaches leverage adaptive variational quantum algorithms for state preparation and propagation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present and benchmark quantum computing approaches for calculating real-time single-particle Green's functions and nonlinear susceptibilities of Hamiltonian systems. The approaches leverage adaptive variational quantum algorithms for state preparation and propagation. Using automatically generated compact circuits, the dynamical evolution is performed over sufficiently long times to achieve adequate frequency resolution of the response functions. We showcase accurate Green's function calculations using a statevector simulator on classical hardware for Fermi-Hubbard chains of 4 and 6 sites, with maximal ansatz circuit depths of 65 and 424 layers, respectively, and for the molecule LiH with a maximal ansatz circuit depth of 81 layers. Additionally, we consider an antiferromagnetic quantum spin-1 model that incorporates the Dzyaloshinskii-Moriya interaction to illustrate calculations of the third-order nonlinear susceptibilities, which can be measured in two-dimensional coherent spectroscopy experiments. These results demonstrate that real-time approaches using adaptive parameterized circuits to evaluate linear and nonlinear response functions can be feasible with near-term quantum processors.
Related papers
- Efficient calculation of Green's functions on quantum computers via simultaneous circuit perturbation [0.0]
We propose a novel, ancilla-free algorithm to compute Retarded Green's Functions (RGFs) on quantum computers.<n>We benchmark the protocol on the one-dimensional Heisenberg and Fermi-Hubbard models.
arXiv Detail & Related papers (2025-05-08T18:00:03Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Solving reaction dynamics with quantum computing algorithms [42.408991654684876]
We study quantum algorithms for response functions, relevant for describing different reactions governed by linear response.<n>We focus on nuclear-physics applications and consider a qubit-efficient mapping on the lattice, which can efficiently represent the large volumes required for realistic scattering simulations.
arXiv Detail & Related papers (2024-03-30T00:21:46Z) - Quantum Computed Green's Functions using a Cumulant Expansion of the Lanczos Method [0.0]
We present a quantum computational method to calculate the many-body Green's function matrix in a spin orbital basis.
We demonstrate the calculation of Green's functions on Quantinuum's H1-1 trapped-ion quantum computer.
arXiv Detail & Related papers (2023-09-18T11:45:04Z) - Computation of Green's function by local variational quantum compilation [0.0]
We propose an efficient method to compute the real-time Green's function based on the local variational quantum compilation algorithm.
Our method requires shallow quantum circuits to calculate the Green's function and can be utilized on both near-term noisy intermediate-scale and long-term fault-tolerant quantum computers.
arXiv Detail & Related papers (2023-03-28T01:23:15Z) - Efficient estimation of trainability for variational quantum circuits [43.028111013960206]
We find an efficient method to compute the cost function and its variance for a wide class of variational quantum circuits.
This method can be used to certify trainability for variational quantum circuits and explore design strategies that can overcome the barren plateau problem.
arXiv Detail & Related papers (2023-02-09T14:05:18Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Nuclear two point correlation functions on a quantum-computer [105.89228861548395]
We use current quantum hardware and error mitigation protocols to calculate response functions for a highly simplified nuclear model.
In this work we use current quantum hardware and error mitigation protocols to calculate response functions for a modified Fermi-Hubbard model in two dimensions with three distinguishable nucleons on four lattice sites.
arXiv Detail & Related papers (2021-11-04T16:25:33Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - A variational quantum eigensolver for dynamic correlation functions [0.9176056742068814]
We show how the calculation of zero-temperature dynamic correlation functions can be recast into a modified VQE algorithm.
This allows for important physical expectation values describing the dynamics of the system to be directly converged on the frequency axis.
We believe the approach shows potential for the extraction of frequency dynamics of correlated systems on near-term quantum processors.
arXiv Detail & Related papers (2021-05-04T18:52:45Z) - Fast inversion, preconditioned quantum linear system solvers, and fast
evaluation of matrix functions [4.327821619134312]
We introduce a quantum primitive called fast inversion, which can be used as a preconditioner for solving quantum linear systems.
We demonstrate the application of preconditioned linear system solvers for computing single-particle Green's functions of quantum many-body systems.
arXiv Detail & Related papers (2020-08-30T23:24:58Z) - Variational Monte Carlo calculations of $\mathbf{A\leq 4}$ nuclei with
an artificial neural-network correlator ansatz [62.997667081978825]
We introduce a neural-network quantum state ansatz to model the ground-state wave function of light nuclei.
We compute the binding energies and point-nucleon densities of $Aleq 4$ nuclei as emerging from a leading-order pionless effective field theory Hamiltonian.
arXiv Detail & Related papers (2020-07-28T14:52:28Z) - Method of spectral Green functions in driven open quantum dynamics [77.34726150561087]
A novel method based on spectral Green functions is presented for the simulation of driven open quantum dynamics.
The formalism shows remarkable analogies to the use of Green functions in quantum field theory.
The method dramatically reduces computational cost compared with simulations based on solving the full master equation.
arXiv Detail & Related papers (2020-06-04T09:41:08Z) - Measuring Analytic Gradients of General Quantum Evolution with the
Stochastic Parameter Shift Rule [0.0]
We study the problem of estimating the gradient of the function to be optimized directly from quantum measurements.
We derive a mathematically exact formula that provides an algorithm for estimating the gradient of any multi-qubit parametric quantum evolution.
Our algorithm continues to work, although with some approximations, even when all the available quantum gates are noisy.
arXiv Detail & Related papers (2020-05-20T18:24:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.