Binary Losses for Density Ratio Estimation
- URL: http://arxiv.org/abs/2407.01371v3
- Date: Mon, 27 Jan 2025 08:58:59 GMT
- Title: Binary Losses for Density Ratio Estimation
- Authors: Werner Zellinger,
- Abstract summary: Estimating the ratio of two probability densities from a finite number of observations is a central machine learning problem.
In this work, we characterize all loss functions that result in density ratio estimators with small error.
We obtain a simple recipe for constructing loss functions with certain properties, such as those that prioritize an accurate estimation of large density ratio values.
- Score: 2.512309434783062
- License:
- Abstract: Estimating the ratio of two probability densities from a finite number of observations is a central machine learning problem. A common approach is to construct estimators using binary classifiers that distinguish observations from the two densities. However, the accuracy of these estimators depends on the choice of the binary loss function, raising the question of which loss function to choose based on desired error properties. For example, traditional loss functions, such as logistic or boosting loss, prioritize accurate estimation of small density ratio values over large ones, even though the latter are more critical in many applications. In this work, we start with prescribed error measures in a class of Bregman divergences and characterize all loss functions that result in density ratio estimators with small error. Our characterization extends results on composite binary losses from (Reid & Williamson, 2010) and their connection to density ratio estimation as identified by (Menon & Ong, 2016). As a result, we obtain a simple recipe for constructing loss functions with certain properties, such as those that prioritize an accurate estimation of large density ratio values. Our novel loss functions outperform related approaches for resolving parameter choice issues of 11 deep domain adaptation algorithms in average performance across 484 real-world tasks including sensor signals, texts, and images.
Related papers
- Semiparametric conformal prediction [79.6147286161434]
Risk-sensitive applications require well-calibrated prediction sets over multiple, potentially correlated target variables.
We treat the scores as random vectors and aim to construct the prediction set accounting for their joint correlation structure.
We report desired coverage and competitive efficiency on a range of real-world regression problems.
arXiv Detail & Related papers (2024-11-04T14:29:02Z) - Robust Non-parametric Knowledge-based Diffusion Least Mean Squares over
Adaptive Networks [12.266804067030455]
The proposed algorithm leads to a robust estimation of an unknown parameter vector in a group of cooperative estimators.
Results show the robustness of the proposed algorithm in the presence of different noise types.
arXiv Detail & Related papers (2023-12-03T06:18:59Z) - Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
Noise-contrastive estimation(NCE) has been proposed by formulating the objective as the logistic loss of the real data and the artificial noise.
In this paper, we study it a direct approach for optimizing the negative log-likelihood of unnormalized models.
arXiv Detail & Related papers (2023-06-13T01:18:16Z) - Asymptotic Characterisation of Robust Empirical Risk Minimisation
Performance in the Presence of Outliers [18.455890316339595]
We study robust linear regression in high-dimension, when both the dimension $d$ and the number of data points $n$ diverge with a fixed ratio $alpha=n/d$, and study a data model that includes outliers.
We provide exacts for the performances of the empirical risk minimisation (ERM) using $ell$-regularised $ell$, $ell_$, and Huber losses.
arXiv Detail & Related papers (2023-05-30T12:18:39Z) - Nonparametric Probabilistic Regression with Coarse Learners [1.8275108630751844]
We show that we can compute precise conditional densities with minimal assumptions on the shape or form of the density.
We demonstrate this approach on a variety of datasets and show competitive performance, particularly on larger datasets.
arXiv Detail & Related papers (2022-10-28T16:25:26Z) - Meta Learning Low Rank Covariance Factors for Energy-Based Deterministic
Uncertainty [58.144520501201995]
Bi-Lipschitz regularization of neural network layers preserve relative distances between data instances in the feature spaces of each layer.
With the use of an attentive set encoder, we propose to meta learn either diagonal or diagonal plus low-rank factors to efficiently construct task specific covariance matrices.
We also propose an inference procedure which utilizes scaled energy to achieve a final predictive distribution.
arXiv Detail & Related papers (2021-10-12T22:04:19Z) - Featurized Density Ratio Estimation [82.40706152910292]
In our work, we propose to leverage an invertible generative model to map the two distributions into a common feature space prior to estimation.
This featurization brings the densities closer together in latent space, sidestepping pathological scenarios where the learned density ratios in input space can be arbitrarily inaccurate.
At the same time, the invertibility of our feature map guarantees that the ratios computed in feature space are equivalent to those in input space.
arXiv Detail & Related papers (2021-07-05T18:30:26Z) - Learning Optical Flow from a Few Matches [67.83633948984954]
We show that the dense correlation volume representation is redundant and accurate flow estimation can be achieved with only a fraction of elements in it.
Experiments show that our method can reduce computational cost and memory use significantly, while maintaining high accuracy.
arXiv Detail & Related papers (2021-04-05T21:44:00Z) - Optimized Loss Functions for Object detection: A Case Study on Nighttime
Vehicle Detection [0.0]
In this paper, we optimize both two loss functions for classification and localization simultaneously.
Compared to the existing studies, in which the correlation is only applied to improve the localization accuracy for positive samples, this paper utilizes the correlation to obtain the really hard negative samples.
A novel localization loss named MIoU is proposed by incorporating a Mahalanobis distance between predicted box and target box, which eliminate the gradients inconsistency problem in the DIoU loss.
arXiv Detail & Related papers (2020-11-11T03:00:49Z) - Evaluating representations by the complexity of learning low-loss
predictors [55.94170724668857]
We consider the problem of evaluating representations of data for use in solving a downstream task.
We propose to measure the quality of a representation by the complexity of learning a predictor on top of the representation that achieves low loss on a task of interest.
arXiv Detail & Related papers (2020-09-15T22:06:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.