FastCLIP: A Suite of Optimization Techniques to Accelerate CLIP Training with Limited Resources
- URL: http://arxiv.org/abs/2407.01445v3
- Date: Wed, 02 Oct 2024 17:34:06 GMT
- Title: FastCLIP: A Suite of Optimization Techniques to Accelerate CLIP Training with Limited Resources
- Authors: Xiyuan Wei, Fanjiang Ye, Ori Yonay, Xingyu Chen, Baixi Sun, Dingwen Tao, Tianbao Yang,
- Abstract summary: We introduce FastCLIP, a general CLIP training framework built on advanced compositional optimization techniques.
Our framework is equipped with an efficient gradient reduction strategy to reduce communication overhead.
We benchmark the performance of FastCLIP and the state-of-the-art training baseline on different compute scales.
- Score: 45.40926501138365
- License:
- Abstract: Existing studies of training state-of-the-art Contrastive Language-Image Pretraining (CLIP) models on large-scale data involve hundreds of or even thousands of GPUs due to the requirement of a large batch size. However, such a large amount of resources is not accessible to most people. While advanced compositional optimization techniques for optimizing global contrastive losses have been demonstrated effective for removing the requirement of large batch size, their performance on large-scale data remains underexplored and not optimized. To bridge the gap, this paper explores several aspects of CLIP training with limited resources (e.g., up to tens of GPUs). First, we introduce FastCLIP, a general CLIP training framework built on advanced compositional optimization techniques while designed and optimized for the distributed setting. Our framework is equipped with an efficient gradient reduction strategy to reduce communication overhead. Second, to further boost training efficiency, we investigate three components of the framework from an optimization perspective: the schedule of the inner learning rate, the update rules of the temperature parameter and the model parameters, respectively. Experiments on different strategies for each component shed light on how to conduct CLIP training more efficiently. Finally, we benchmark the performance of FastCLIP and the state-of-the-art training baseline (OpenCLIP) on different compute scales up to 32 GPUs on 8 nodes, and three data scales ranging from 2.7 million, 9.1 million to 315 million image-text pairs to demonstrate the significant improvement of FastCLIP in the resource-limited setting. We release the code of FastCLIP at https://github.com/Optimization-AI/fast_clip .
Related papers
- Search for Efficient Large Language Models [52.98684997131108]
Large Language Models (LLMs) have long held sway in the realms of artificial intelligence research.
Weight pruning, quantization, and distillation have been embraced to compress LLMs, targeting memory reduction and inference acceleration.
Most model compression techniques concentrate on weight optimization, overlooking the exploration of optimal architectures.
arXiv Detail & Related papers (2024-09-25T21:32:12Z) - Accelerating Large Language Model Training with Hybrid GPU-based Compression [3.204387803072905]
MPI libraries have been proven to reduce message size significantly and leverage interconnect bandwidth.
We investigate the efficacy of compression-assisted MPI collectives under the context of distributed Large Language Model (LLM) training.
arXiv Detail & Related papers (2024-09-04T04:05:30Z) - ALPS: Improved Optimization for Highly Sparse One-Shot Pruning for Large Language Models [14.310720048047136]
ALPS is an optimization-based framework that tackles the pruning problem using the operator splitting technique and a preconditioned gradient conjugate-based post-processing step.
Our approach incorporates novel techniques to accelerate and theoretically guarantee convergence while leveraging vectorization and GPU parallelism for efficiency.
On the OPT-30B model with 70% sparsity, ALPS achieves a 13% reduction in test perplexity on the WikiText dataset and a 19% improvement in zero-shot benchmark performance compared to existing methods.
arXiv Detail & Related papers (2024-06-12T02:57:41Z) - Scaling (Down) CLIP: A Comprehensive Analysis of Data, Architecture, and Training Strategies [27.809995478990544]
This paper investigates the performance of the Contrastive Language-Image Pre-training (CLIP) when scaled down to limited computation budgets.
We show that a smaller dataset of high-quality data can outperform a larger dataset with lower quality.
We compare four CLIP training strategies - SLIP, FLIP, CLIP, and CLIP+Data Augmentation - and show that the choice of training strategy depends on the available compute resource.
arXiv Detail & Related papers (2024-04-12T02:04:34Z) - Boosting Visual-Language Models by Exploiting Hard Samples [126.35125029639168]
HELIP is a cost-effective strategy tailored to enhance the performance of existing CLIP models.
Our method allows for effortless integration with existing models' training pipelines.
On comprehensive benchmarks, HELIP consistently boosts existing models to achieve leading performance.
arXiv Detail & Related papers (2023-05-09T07:00:17Z) - Slapo: A Schedule Language for Progressive Optimization of Large Deep
Learning Model Training [17.556432199389615]
Slapo is a schedule language that decouples the execution of a tensor-level operator from its arithmetic definition.
We show that Slapo can improve training throughput by up to 2.92x on a single machine with 8 NVIDIA V100 GPUs.
arXiv Detail & Related papers (2023-02-16T00:34:53Z) - CLIP2Point: Transfer CLIP to Point Cloud Classification with Image-Depth
Pre-training [121.46758260964114]
Pre-training across 3D vision and language remains under development because of limited training data.
Recent works attempt to transfer vision-language pre-training models to 3D vision.
PointCLIP converts point cloud data to multi-view depth maps, adopting CLIP for shape classification.
We propose CLIP2Point, an image-depth pre-training method by contrastive learning to transfer CLIP to the 3D domain.
arXiv Detail & Related papers (2022-10-03T16:13:14Z) - dPRO: A Generic Profiling and Optimization System for Expediting
Distributed DNN Training [12.413533491501548]
This paper proposes dPRO, a tool to identify performance bottlenecks in distributed training systems.
We implement dPRO on multiple deep learning frameworks (PyTorch, MXNet, AllReduce and Server architecture) and representative communication schemes.
Extensive experiments show that dPRO predicts performance of distributed training in various settings with5% errors in most cases and finds optimization strategies with up to87.1%-up over the baselines.
arXiv Detail & Related papers (2022-05-05T07:15:25Z) - Online Convolutional Re-parameterization [51.97831675242173]
We present online convolutional re- parameterization (OREPA), a two-stage pipeline, aiming to reduce the huge training overhead by squeezing the complex training-time block into a single convolution.
Compared with the state-of-the-art re-param models, OREPA is able to save the training-time memory cost by about 70% and accelerate the training speed by around 2x.
We also conduct experiments on object detection and semantic segmentation and show consistent improvements on the downstream tasks.
arXiv Detail & Related papers (2022-04-02T09:50:19Z) - PointCLIP: Point Cloud Understanding by CLIP [77.02399444893963]
We propose PointCLIP, which conducts alignment between CLIP-encoded point cloud and 3D category texts.
PointCLIP is a promising alternative for effective 3D point cloud understanding via CLIP under low resource cost and data regime.
arXiv Detail & Related papers (2021-12-04T19:42:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.