RegMix: Data Mixture as Regression for Language Model Pre-training
- URL: http://arxiv.org/abs/2407.01492v1
- Date: Mon, 1 Jul 2024 17:31:03 GMT
- Title: RegMix: Data Mixture as Regression for Language Model Pre-training
- Authors: Qian Liu, Xiaosen Zheng, Niklas Muennighoff, Guangtao Zeng, Longxu Dou, Tianyu Pang, Jing Jiang, Min Lin,
- Abstract summary: We propose RegMix to automatically identify a high-performing data mixture by formulating it as a regression task.
RegMix involves training a set of small models with diverse data mixtures and fitting a regression model to predict their performance.
Our method demonstrates superior performance compared to human selection and achieves results that match or surpass DoReMi.
- Score: 40.45464495981735
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The data mixture for large language model pre-training significantly impacts performance, yet how to determine an effective mixture remains unclear. We propose RegMix to automatically identify a high-performing data mixture by formulating it as a regression task. RegMix involves training a set of small models with diverse data mixtures and fitting a regression model to predict their performance given their respective mixtures. With the fitted regression model, we simulate the top-ranked mixture and use it to train a large-scale model with orders of magnitude more compute. To empirically validate RegMix, we train 512 models with 1M parameters for 1B tokens of different mixtures to fit the regression model and find the optimal mixture. Using this mixture we train a 1B parameter model for 25B tokens (i.e. 1000x larger and 25x longer) which we find performs best among 64 candidate 1B parameter models with other mixtures. Further, our method demonstrates superior performance compared to human selection and achieves results that match or surpass DoReMi, while utilizing only 10% of the compute budget. Our experiments also show that (1) Data mixtures significantly impact performance with single-task performance variations of up to 14.6%; (2) Web corpora rather than data perceived as high-quality like Wikipedia have the strongest positive correlation with downstream performance; (3) Domains interact in complex ways often contradicting common sense, thus automatic approaches like RegMix are needed; (4) Data mixture effects transcend scaling laws, and our approach captures the complexity by considering all domains together. Our code is available at https://github.com/sail-sg/regmix.
Related papers
- RC-Mixup: A Data Augmentation Strategy against Noisy Data for Regression Tasks [27.247270530020664]
We study the problem of robust data augmentation for regression tasks in the presence of noisy data.
C-Mixup is more selective in which samples to mix based on their label distances for better regression performance.
We propose RC-Mixup, which tightly integrates C-Mixup with multi-round robust training methods for a synergistic effect.
arXiv Detail & Related papers (2024-05-28T08:02:42Z) - BiMix: Bivariate Data Mixing Law for Language Model Pretraining [47.77701041534746]
The impact of pretraining data composition on model performance remains poorly understood.
$textbfBiMix$ provides a systematic framework for understanding and optimizing data mixtures.
Our work contributes both theoretical insights into data mixing dynamics and practical tools for enhancing LLM training efficiency.
arXiv Detail & Related papers (2024-05-23T09:44:02Z) - Data Mixing Laws: Optimizing Data Mixtures by Predicting Language Modeling Performance [55.872926690722714]
We study the predictability of model performance regarding the mixture proportions in function forms.
We propose nested use of the scaling laws of training steps, model sizes, and our data mixing law.
Our method effectively optimize the training mixture of a 1B model trained for 100B tokens in RedPajama.
arXiv Detail & Related papers (2024-03-25T17:14:00Z) - Efficient Online Data Mixing For Language Model Pre-Training [101.45242332613944]
Existing data selection methods suffer from slow and computationally expensive processes.
Data mixing, on the other hand, reduces the complexity of data selection by grouping data points together.
We develop an efficient algorithm for Online Data Mixing (ODM) that combines elements from both data selection and data mixing.
arXiv Detail & Related papers (2023-12-05T00:42:35Z) - C-Mixup: Improving Generalization in Regression [71.10418219781575]
Mixup algorithm improves generalization by linearly interpolating a pair of examples and their corresponding labels.
We propose C-Mixup, which adjusts the sampling probability based on the similarity of the labels.
C-Mixup achieves 6.56%, 4.76%, 5.82% improvements in in-distribution generalization, task generalization, and out-of-distribution robustness, respectively.
arXiv Detail & Related papers (2022-10-11T20:39:38Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
We show how a new model, similar to a logistic regression, may be learned from aggregated data only by approximating the unobserved feature distribution with a maximum entropy hypothesis.
We present empirical evidence on several public datasets that the model learned this way can achieve performances comparable to those of a logistic model trained with the full unaggregated data.
arXiv Detail & Related papers (2022-10-05T09:17:27Z) - Harnessing Hard Mixed Samples with Decoupled Regularizer [69.98746081734441]
Mixup is an efficient data augmentation approach that improves the generalization of neural networks by smoothing the decision boundary with mixed data.
In this paper, we propose an efficient mixup objective function with a decoupled regularizer named Decoupled Mixup (DM)
DM can adaptively utilize hard mixed samples to mine discriminative features without losing the original smoothness of mixup.
arXiv Detail & Related papers (2022-03-21T07:12:18Z) - MixRL: Data Mixing Augmentation for Regression using Reinforcement
Learning [2.1345682889327837]
Existing techniques for data augmentation largely focus on classification tasks and do not readily apply to regression tasks.
We show that mixing examples that either have a large data or label distance may have an increasingly-negative effect on model performance.
We propose MixRL, a data augmentation meta learning framework for regression that learns for each example how many nearest neighbors it should be mixed with for the best model performance.
arXiv Detail & Related papers (2021-06-07T07:01:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.