MIA-Bench: Towards Better Instruction Following Evaluation of Multimodal LLMs
- URL: http://arxiv.org/abs/2407.01509v3
- Date: Thu, 25 Jul 2024 19:50:32 GMT
- Title: MIA-Bench: Towards Better Instruction Following Evaluation of Multimodal LLMs
- Authors: Yusu Qian, Hanrong Ye, Jean-Philippe Fauconnier, Peter Grasch, Yinfei Yang, Zhe Gan,
- Abstract summary: MIA-Bench is a benchmark designed to evaluate multimodal large language models (MLLMs) on their ability to strictly adhere to complex instructions.
Our benchmark comprises a diverse set of 400 image-prompt pairs, each crafted to challenge the models' compliance with layered instructions.
- Score: 47.94710556156627
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce MIA-Bench, a new benchmark designed to evaluate multimodal large language models (MLLMs) on their ability to strictly adhere to complex instructions. Our benchmark comprises a diverse set of 400 image-prompt pairs, each crafted to challenge the models' compliance with layered instructions in generating accurate responses that satisfy specific requested patterns. Evaluation results from a wide array of state-of-the-art MLLMs reveal significant variations in performance, highlighting areas for improvement in instruction fidelity. Additionally, we create extra training data and explore supervised fine-tuning to enhance the models' ability to strictly follow instructions without compromising performance on other tasks. We hope this benchmark not only serves as a tool for measuring MLLM adherence to instructions, but also guides future developments in MLLM training methods.
Related papers
- RLEF: Grounding Code LLMs in Execution Feedback with Reinforcement Learning [35.446870721902904]
Large language models (LLMs) deployed as agents solve user-specified tasks over multiple steps while keeping the required manual engagement to a minimum.
We propose an end-to-end reinforcement learning method for teaching models to leverage execution feedback in the realm of code synthesis.
arXiv Detail & Related papers (2024-10-02T23:25:17Z) - Align$^2$LLaVA: Cascaded Human and Large Language Model Preference Alignment for Multi-modal Instruction Curation [56.75665429851673]
This paper introduces a novel instruction curation algorithm, derived from two unique perspectives, human and LLM preference alignment.
Experiments demonstrate that we can maintain or even improve model performance by compressing synthetic multimodal instructions by up to 90%.
arXiv Detail & Related papers (2024-09-27T08:20:59Z) - Enhancing and Assessing Instruction-Following with Fine-Grained Instruction Variants [28.691691883519542]
We introduce a technique that decomposes complex instructions into simpler sub-components, modifies these, and reconstructs them into new variants.
Based on DeMoRecon, we developed the FGIV dataset which contains fine-grained instruction variants of 1,773 seed instructions.
Our findings show that LLMs fine-tuned with FGIV will gain significant performance boost on both ours and commonly used instructions-following benchmarks.
arXiv Detail & Related papers (2024-06-17T08:08:11Z) - Distilling Instruction-following Abilities of Large Language Models with Task-aware Curriculum Planning [12.651588927599441]
Instruction tuning aims to align large language models with open-domain instructions and human-preferred responses.
We introduce Task-Aware Curriculum Planning for Instruction Refinement (TAPIR) to select instructions that are difficult for a student LLM to follow.
To balance the student's capabilities, task distributions in training sets are adjusted with responses automatically refined according to their corresponding tasks.
arXiv Detail & Related papers (2024-05-22T08:38:26Z) - CoIN: A Benchmark of Continual Instruction tuNing for Multimodel Large Language Model [121.23360004498893]
We present a benchmark, namely Continual Instruction tuNing (CoIN), to assess existing MLLMs in the sequential instruction tuning paradigm.
Experiments on CoIN demonstrate that current powerful MLLMs still suffer catastrophic forgetting.
We introduce MoELoRA to MLLMs which is effective to retain the previous instruction alignment.
arXiv Detail & Related papers (2024-03-13T08:54:31Z) - Model Composition for Multimodal Large Language Models [71.5729418523411]
We propose a new paradigm through the model composition of existing MLLMs to create a new model that retains the modal understanding capabilities of each original model.
Our basic implementation, NaiveMC, demonstrates the effectiveness of this paradigm by reusing modality encoders and merging LLM parameters.
arXiv Detail & Related papers (2024-02-20T06:38:10Z) - Evaluating Large Language Models at Evaluating Instruction Following [54.49567482594617]
We introduce a challenging meta-evaluation benchmark, LLMBar, designed to test the ability of an LLM evaluator in discerning instruction-following outputs.
We discover that different evaluators exhibit distinct performance on LLMBar and even the highest-scoring ones have substantial room for improvement.
arXiv Detail & Related papers (2023-10-11T16:38:11Z) - MME: A Comprehensive Evaluation Benchmark for Multimodal Large Language Models [73.86954509967416]
Multimodal Large Language Model (MLLM) relies on the powerful LLM to perform multimodal tasks.
This paper presents the first comprehensive MLLM Evaluation benchmark MME.
It measures both perception and cognition abilities on a total of 14 subtasks.
arXiv Detail & Related papers (2023-06-23T09:22:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.