Decentralized Multi-Party Multi-Network AI for Global Deployment of 6G Wireless Systems
- URL: http://arxiv.org/abs/2407.01544v1
- Date: Mon, 15 Apr 2024 15:21:25 GMT
- Title: Decentralized Multi-Party Multi-Network AI for Global Deployment of 6G Wireless Systems
- Authors: Merim Dzaferagic, Marco Ruffini, Nina Slamnik-Krijestorac, Joao F. Santos, Johann Marquez-Barja, Christos Tranoris, Spyros Denazis, Thomas Kyriakakis, Panagiotis Karafotis, Luiz DaSilva, Shashi Raj Pandey, Junya Shiraishi, Petar Popovski, Soren Kejser Jensen, Christian Thomsen, Torben Bach Pedersen, Holger Claussen, Jinfeng Du, Gil Zussman, Tingjun Chen, Yiran Chen, Seshu Tirupathi, Ivan Seskar, Daniel Kilper,
- Abstract summary: This paper introduces the Decentralized Multi-Party, Multi-Network AI (DMMAI) framework for integrating AI into 6G networks deployed at scale.
DMMAI harmonizes AI-driven controls across diverse network platforms and thus facilitates networks that autonomously configure, monitor, and repair themselves.
Our approach explores multi-network orchestration and AI control integration, filling a critical gap in standardized frameworks for AI-driven coordination in 6G networks.
- Score: 31.754166695074353
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multiple visions of 6G networks elicit Artificial Intelligence (AI) as a central, native element. When 6G systems are deployed at a large scale, end-to-end AI-based solutions will necessarily have to encompass both the radio and the fiber-optical domain. This paper introduces the Decentralized Multi-Party, Multi-Network AI (DMMAI) framework for integrating AI into 6G networks deployed at scale. DMMAI harmonizes AI-driven controls across diverse network platforms and thus facilitates networks that autonomously configure, monitor, and repair themselves. This is particularly crucial at the network edge, where advanced applications meet heightened functionality and security demands. The radio/optical integration is vital due to the current compartmentalization of AI research within these domains, which lacks a comprehensive understanding of their interaction. Our approach explores multi-network orchestration and AI control integration, filling a critical gap in standardized frameworks for AI-driven coordination in 6G networks. The DMMAI framework is a step towards a global standard for AI in 6G, aiming to establish reference use cases, data and model management methods, and benchmarking platforms for future AI/ML solutions.
Related papers
- AI-native Interconnect Framework for Integration of Large Language Model
Technologies in 6G Systems [3.5370806221677245]
This paper explores the seamless integration of Large Language Models (LLMs) and Generalized Pretrained Transformers (GPT) within 6G systems.
LLMs and GPTs will collaboratively take center stage alongside traditional pre-generative AI and machine learning (ML) algorithms.
arXiv Detail & Related papers (2023-11-10T02:59:16Z) - Foundation Model Based Native AI Framework in 6G with Cloud-Edge-End
Collaboration [56.330705072736166]
We propose a 6G native AI framework based on foundation models, provide a customization approach for intent-aware PFM, and outline a novel cloud-edge-end collaboration paradigm.
As a practical use case, we apply this framework for orchestration, achieving the maximum sum rate within a wireless communication system.
arXiv Detail & Related papers (2023-10-26T15:19:40Z) - In-situ Model Downloading to Realize Versatile Edge AI in 6G Mobile
Networks [61.416494781759326]
In-situ model downloading aims to achieve transparent and real-time replacement of on-device AI models by downloading from an AI library in the network.
A key component of the presented framework is a set of techniques that dynamically compress a downloaded model at the depth-level, parameter-level, or bit-level.
We propose a 6G network architecture customized for deploying in-situ model downloading with the key feature of a three-tier (edge, local, and central) AI library.
arXiv Detail & Related papers (2022-10-07T13:41:15Z) - Edge Artificial Intelligence for 6G: Vision, Enabling Technologies, and
Applications [39.223546118441476]
6G will revolutionize the evolution of wireless from "connected things" to "connected intelligence"
Deep learning and big data analytics based AI systems require tremendous computation and communication resources.
edge AI stands out as a disruptive technology for 6G to seamlessly integrate sensing, communication, computation, and intelligence.
arXiv Detail & Related papers (2021-11-24T11:47:16Z) - Single and Multi-Agent Deep Reinforcement Learning for AI-Enabled
Wireless Networks: A Tutorial [29.76086936463468]
This tutorial focuses on the role of Deep Reinforcement Learning (DRL) with an emphasis on deep Multi-Agent Reinforcement Learning (MARL) for AI-enabled 6G networks.
The first part of this paper will present a clear overview of the mathematical frameworks for single-agent RL and MARL.
We provide a selective description of RL algorithms such as Model-Based RL (MBRL) and cooperative MARL.
arXiv Detail & Related papers (2020-11-06T22:12:40Z) - Towards Self-learning Edge Intelligence in 6G [143.1821636135413]
Edge intelligence, also called edge-native artificial intelligence (AI), is an emerging technological framework focusing on seamless integration of AI, communication networks, and mobile edge computing.
In this article, we identify the key requirements and challenges of edge-native AI in 6G.
arXiv Detail & Related papers (2020-10-01T02:16:40Z) - A Tutorial on Ultra-Reliable and Low-Latency Communications in 6G:
Integrating Domain Knowledge into Deep Learning [115.75967665222635]
Ultra-reliable and low-latency communications (URLLC) will be central for the development of various emerging mission-critical applications.
Deep learning algorithms have been considered as promising ways of developing enabling technologies for URLLC in future 6G networks.
This tutorial illustrates how domain knowledge can be integrated into different kinds of deep learning algorithms for URLLC.
arXiv Detail & Related papers (2020-09-13T14:53:01Z) - Federated Learning for 6G Communications: Challenges, Methods, and
Future Directions [71.31783903289273]
We introduce the integration of 6G and federated learning and provide potential federated learning applications for 6G.
We describe key technical challenges, the corresponding federated learning methods, and open problems for future research on federated learning in the context of 6G communications.
arXiv Detail & Related papers (2020-06-04T15:17:19Z) - Towards Ubiquitous AI in 6G with Federated Learning [43.318721658647014]
Federated learning (FL) is an emerging distributed AI solution that enables data-driven AI solutions in heterogeneous and potentially massive-scale networks.
We propose an FL-based network architecture and discuss its potential for addressing some of the novel challenges expected in 6G.
arXiv Detail & Related papers (2020-04-26T13:05:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.