Synthetic Data in Radiological Imaging: Current State and Future Outlook
- URL: http://arxiv.org/abs/2407.01561v1
- Date: Wed, 8 May 2024 18:35:47 GMT
- Title: Synthetic Data in Radiological Imaging: Current State and Future Outlook
- Authors: Elena Sizikova, Andreu Badal, Jana G. Delfino, Miguel Lago, Brandon Nelson, Niloufar Saharkhiz, Berkman Sahiner, Ghada Zamzmi, Aldo Badano,
- Abstract summary: Key challenge for the development and deployment of artificial intelligence (AI) solutions in radiology is solving the associated data limitations.
In silico data offers a number of potential advantages to patient data, such as diminished patient harm, reduced cost, simplified data acquisition, scalability, improved quality assurance testing, and a mitigation approach to data imbalances.
- Score: 3.047958668050099
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: A key challenge for the development and deployment of artificial intelligence (AI) solutions in radiology is solving the associated data limitations. Obtaining sufficient and representative patient datasets with appropriate annotations may be burdensome due to high acquisition cost, safety limitations, patient privacy restrictions or low disease prevalence rates. In silico data offers a number of potential advantages to patient data, such as diminished patient harm, reduced cost, simplified data acquisition, scalability, improved quality assurance testing, and a mitigation approach to data imbalances. We summarize key research trends and practical uses for synthetically generated data for radiological applications of AI. Specifically, we discuss different types of techniques for generating synthetic examples, their main application areas, and related quality control assessment issues. We also discuss current approaches for evaluating synthetic imaging data. Overall, synthetic data holds great promise in addressing current data availability gaps, but additional work is needed before its full potential is realized.
Related papers
- NFDI4Health workflow and service for synthetic data generation, assessment and risk management [0.0]
A promising solution to this challenge is synthetic data generation.
This technique creates entirely new datasets that mimic the statistical properties of real data.
In this paper, we present the workflow and different services developed in the context of Germany's National Data Infrastructure project NFDI4Health.
arXiv Detail & Related papers (2024-08-08T14:08:39Z) - TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [57.067409211231244]
This paper presents meticulously curated AIready datasets covering multi-modal data (e.g., drug molecule, disease code, text, categorical/numerical features) and 8 crucial prediction challenges in clinical trial design.
We provide basic validation methods for each task to ensure the datasets' usability and reliability.
We anticipate that the availability of such open-access datasets will catalyze the development of advanced AI approaches for clinical trial design.
arXiv Detail & Related papers (2024-06-30T09:13:10Z) - Privacy-Preserving Statistical Data Generation: Application to Sepsis Detection [13.445454471355214]
We propose a statistical approach for synthetic data generation applicable in classification problems.
We assess the utility and privacy implications of synthetic data generated by Kernel Density Estimator and K-Nearest Neighbors sampling (KDE-KNN) within a real-world context.
arXiv Detail & Related papers (2024-04-25T14:26:53Z) - Best Practices and Lessons Learned on Synthetic Data [83.63271573197026]
The success of AI models relies on the availability of large, diverse, and high-quality datasets.
Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns.
arXiv Detail & Related papers (2024-04-11T06:34:17Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
Synthetic data serves as an alternative in training machine learning models.
ensuring that synthetic data mirrors the complex nuances of real-world data is a challenging task.
This paper explores the potential of integrating data-centric AI techniques to guide the synthetic data generation process.
arXiv Detail & Related papers (2023-10-25T20:32:02Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Beyond Privacy: Navigating the Opportunities and Challenges of Synthetic
Data [91.52783572568214]
Synthetic data may become a dominant force in the machine learning world, promising a future where datasets can be tailored to individual needs.
We discuss which fundamental challenges the community needs to overcome for wider relevance and application of synthetic data.
arXiv Detail & Related papers (2023-04-07T16:38:40Z) - Synthetic Data in Healthcare [10.555189948915492]
We present the cases for physical and statistical simulations for creating data and the proposed applications in healthcare and medicine.
We discuss that while synthetics can promote privacy, equity, safety and continual and causal learning, they also run the risk of introducing flaws, blind spots and propagating or exaggerating biases.
arXiv Detail & Related papers (2023-04-06T17:23:39Z) - Non-Imaging Medical Data Synthesis for Trustworthy AI: A Comprehensive
Survey [6.277848092408045]
Data quality is the key factor for the development of trustworthy AI in healthcare.
Access to good quality datasets is limited by the technical difficulty of data acquisition.
Large-scale sharing of healthcare data is hindered by strict ethical restrictions.
arXiv Detail & Related papers (2022-09-17T13:34:17Z) - Enabling Synthetic Data adoption in regulated domains [1.9512796489908306]
The switch from a Model-Centric to a Data-Centric mindset is putting emphasis on data and its quality rather than algorithms.
In particular, the sensitive nature of the information in highly regulated scenarios needs to be accounted for.
A clever way to bypass such a conundrum relies on Synthetic Data: data obtained from a generative process, learning the real data properties.
arXiv Detail & Related papers (2022-04-13T10:53:54Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
Counterfactual explanations aim to provide to end users a set of features that need to be changed in order to achieve a desired outcome.
Current approaches rarely take into account the feasibility of actions needed to achieve the proposed explanations.
We present Counterfactual Explanations as Interventions in Latent Space (CEILS), a methodology to generate counterfactual explanations.
arXiv Detail & Related papers (2021-06-14T20:48:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.