ModelVerification.jl: a Comprehensive Toolbox for Formally Verifying Deep Neural Networks
- URL: http://arxiv.org/abs/2407.01639v1
- Date: Sun, 30 Jun 2024 20:15:31 GMT
- Title: ModelVerification.jl: a Comprehensive Toolbox for Formally Verifying Deep Neural Networks
- Authors: Tianhao Wei, Luca Marzari, Kai S. Yun, Hanjiang Hu, Peizhi Niu, Xusheng Luo, Changliu Liu,
- Abstract summary: We present textttModelVerification.jl (MV), the first comprehensive, cutting-edge toolbox for verifying different types of Deep Neural Networks (DNNs) and safety specifications.
This versatile toolbox is designed to empower developers and machine learning practitioners with robust tools for verifying and ensuring the trustworthiness of their DNN models.
- Score: 9.279864701876367
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep Neural Networks (DNN) are crucial in approximating nonlinear functions across diverse applications, ranging from image classification to control. Verifying specific input-output properties can be a highly challenging task due to the lack of a single, self-contained framework that allows a complete range of verification types. To this end, we present \texttt{ModelVerification.jl (MV)}, the first comprehensive, cutting-edge toolbox that contains a suite of state-of-the-art methods for verifying different types of DNNs and safety specifications. This versatile toolbox is designed to empower developers and machine learning practitioners with robust tools for verifying and ensuring the trustworthiness of their DNN models.
Related papers
- IDEA: A Flexible Framework of Certified Unlearning for Graph Neural Networks [68.6374698896505]
Graph Neural Networks (GNNs) have been increasingly deployed in a plethora of applications.
Privacy leakage may happen when the trained GNNs are deployed and exposed to potential attackers.
We propose a principled framework named IDEA to achieve flexible and certified unlearning for GNNs.
arXiv Detail & Related papers (2024-07-28T04:59:59Z) - Formal Verification of Deep Neural Networks for Object Detection [1.947473271879451]
Deep neural networks (DNNs) are widely used in real-world applications, yet they remain vulnerable to errors and adversarial attacks.
This work extends formal verification to the more complex domain of emphobject detection models.
arXiv Detail & Related papers (2024-07-01T13:47:54Z) - Securing Graph Neural Networks in MLaaS: A Comprehensive Realization of Query-based Integrity Verification [68.86863899919358]
We introduce a groundbreaking approach to protect GNN models in Machine Learning from model-centric attacks.
Our approach includes a comprehensive verification schema for GNN's integrity, taking into account both transductive and inductive GNNs.
We propose a query-based verification technique, fortified with innovative node fingerprint generation algorithms.
arXiv Detail & Related papers (2023-12-13T03:17:05Z) - Scaling #DNN-Verification Tools with Efficient Bound Propagation and
Parallel Computing [57.49021927832259]
Deep Neural Networks (DNNs) are powerful tools that have shown extraordinary results in many scenarios.
However, their intricate designs and lack of transparency raise safety concerns when applied in real-world applications.
Formal Verification (FV) of DNNs has emerged as a valuable solution to provide provable guarantees on the safety aspect.
arXiv Detail & Related papers (2023-12-10T13:51:25Z) - The #DNN-Verification Problem: Counting Unsafe Inputs for Deep Neural
Networks [94.63547069706459]
#DNN-Verification problem involves counting the number of input configurations of a DNN that result in a violation of a safety property.
We propose a novel approach that returns the exact count of violations.
We present experimental results on a set of safety-critical benchmarks.
arXiv Detail & Related papers (2023-01-17T18:32:01Z) - NCTV: Neural Clamping Toolkit and Visualization for Neural Network
Calibration [66.22668336495175]
A lack of consideration for neural network calibration will not gain trust from humans.
We introduce the Neural Clamping Toolkit, the first open-source framework designed to help developers employ state-of-the-art model-agnostic calibrated models.
arXiv Detail & Related papers (2022-11-29T15:03:05Z) - Testing Feedforward Neural Networks Training Programs [13.249453757295083]
Multiple testing techniques are proposed to generate test cases that can expose inconsistencies in the behavior of Deep Neural Networks.
These techniques assume implicitly that the training program is bug-free and appropriately configured.
We propose TheDeepChecker, an end-to-end property-based debug approach for DNN training programs.
arXiv Detail & Related papers (2022-04-01T20:49:14Z) - A Simple Framework to Quantify Different Types of Uncertainty in Deep
Neural Networks for Image Classification [0.0]
Quantifying uncertainty in a model's predictions is important as it enables the safety of an AI system to be increased.
This is crucial for applications where the cost of an error is high, such as in autonomous vehicle control, medical image analysis, financial estimations or legal fields.
We propose a complete framework to capture and quantify three known types of uncertainty in Deep Neural Networks for the task of image classification.
arXiv Detail & Related papers (2020-11-17T15:36:42Z) - Continuous Safety Verification of Neural Networks [1.7056768055368385]
This paper considers approaches to transfer results established in the previous DNN safety verification problem to a modified problem setting.
The overall concept is evaluated in a $1/10$-scaled vehicle that equips a DNN controller to determine the visual waypoint from the perceived image.
arXiv Detail & Related papers (2020-10-12T13:28:04Z) - The Microsoft Toolkit of Multi-Task Deep Neural Networks for Natural
Language Understanding [97.85957811603251]
We present MT-DNN, an open-source natural language understanding (NLU) toolkit that makes it easy for researchers and developers to train customized deep learning models.
Built upon PyTorch and Transformers, MT-DNN is designed to facilitate rapid customization for a broad spectrum of NLU tasks.
A unique feature of MT-DNN is its built-in support for robust and transferable learning using the adversarial multi-task learning paradigm.
arXiv Detail & Related papers (2020-02-19T03:05:28Z) - Scalable Quantitative Verification For Deep Neural Networks [44.570783946111334]
We propose a test-driven verification framework for deep neural networks (DNNs)
Our technique performs enough tests until soundness of a formal probabilistic property can be proven.
Our work paves the way for verifying properties of distributions captured by real-world deep neural networks, with provable guarantees.
arXiv Detail & Related papers (2020-02-17T09:53:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.