Federated Binary Matrix Factorization using Proximal Optimization
- URL: http://arxiv.org/abs/2407.01776v1
- Date: Mon, 1 Jul 2024 20:10:24 GMT
- Title: Federated Binary Matrix Factorization using Proximal Optimization
- Authors: Sebastian Dalleiger, Jilles Vreeken, Michael Kamp,
- Abstract summary: In this paper, we adapt a state-of-the-art binary matrix factorization relaxation to BMF.
We show that our algorithm outperforms, in terms of quality and efficacy, federation schemes of state-of-the-art BMF methods on a diverse set of real-world and synthetic data.
- Score: 43.01276597844757
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Identifying informative components in binary data is an essential task in many research areas, including life sciences, social sciences, and recommendation systems. Boolean matrix factorization (BMF) is a family of methods that performs this task by efficiently factorizing the data. In real-world settings, the data is often distributed across stakeholders and required to stay private, prohibiting the straightforward application of BMF. To adapt BMF to this context, we approach the problem from a federated-learning perspective, while building on a state-of-the-art continuous binary matrix factorization relaxation to BMF that enables efficient gradient-based optimization. We propose to only share the relaxed component matrices, which are aggregated centrally using a proximal operator that regularizes for binary outcomes. We show the convergence of our federated proximal gradient descent algorithm and provide differential privacy guarantees. Our extensive empirical evaluation demonstrates that our algorithm outperforms, in terms of quality and efficacy, federation schemes of state-of-the-art BMF methods on a diverse set of real-world and synthetic data.
Related papers
- Factor-Assisted Federated Learning for Personalized Optimization with
Heterogeneous Data [6.024145412139383]
Federated learning is an emerging distributed machine learning framework aiming at protecting data privacy.
Data in different clients contain both common knowledge and personalized knowledge.
We develop a novel personalized federated learning framework for heterogeneous data, which we refer to as FedSplit.
arXiv Detail & Related papers (2023-12-07T13:05:47Z) - Exponentially Convergent Algorithms for Supervised Matrix Factorization [2.1485350418225244]
Supervised factorization (SMF) is a machine learning method that converges extraction and classification tasks.
Our paper provides a novel framework that 'lifts' SMF as a low-rank estimation problem in a combined factor space estimation.
arXiv Detail & Related papers (2023-11-18T23:24:02Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
We introduce UnRolled Federated learning (SURF), a method that expands algorithm unrolling to federated learning.
Our proposed method tackles two challenges of this expansion, namely the need to feed whole datasets to the unrolleds and the decentralized nature of federated learning.
arXiv Detail & Related papers (2023-05-24T17:26:22Z) - MFAI: A Scalable Bayesian Matrix Factorization Approach to Leveraging
Auxiliary Information [8.42894516984735]
We propose to integrate gradient boosted trees in the probabilistic matrix factorization framework to leverage auxiliary information (MFAI)
MFAI naturally inherits several salient features of gradient boosted trees, such as the capability of flexibly modeling nonlinear relationships.
MFAI is computationally efficient and scalable to large datasets by exploiting variational inference.
arXiv Detail & Related papers (2023-03-05T03:26:14Z) - Supervised Class-pairwise NMF for Data Representation and Classification [2.7320863258816512]
Non-negative Matrix factorization (NMF) based methods add new terms to the cost function to adapt the model to specific tasks.
NMF method adopts unsupervised approaches to estimate the factorizing matrices.
arXiv Detail & Related papers (2022-09-28T04:33:03Z) - Unitary Approximate Message Passing for Matrix Factorization [90.84906091118084]
We consider matrix factorization (MF) with certain constraints, which finds wide applications in various areas.
We develop a Bayesian approach to MF with an efficient message passing implementation, called UAMPMF.
We show that UAMPMF significantly outperforms state-of-the-art algorithms in terms of recovery accuracy, robustness and computational complexity.
arXiv Detail & Related papers (2022-07-31T12:09:32Z) - Transformer-based Context Condensation for Boosting Feature Pyramids in
Object Detection [77.50110439560152]
Current object detectors typically have a feature pyramid (FP) module for multi-level feature fusion (MFF)
We propose a novel and efficient context modeling mechanism that can help existing FPs deliver better MFF results.
In particular, we introduce a novel insight that comprehensive contexts can be decomposed and condensed into two types of representations for higher efficiency.
arXiv Detail & Related papers (2022-07-14T01:45:03Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - Feature Weighted Non-negative Matrix Factorization [92.45013716097753]
We propose the Feature weighted Non-negative Matrix Factorization (FNMF) in this paper.
FNMF learns the weights of features adaptively according to their importances.
It can be solved efficiently with the suggested optimization algorithm.
arXiv Detail & Related papers (2021-03-24T21:17:17Z) - A High-Performance Implementation of Bayesian Matrix Factorization with
Limited Communication [10.639704288188767]
Matrix factorization algorithms can quantify uncertainty in their predictions and avoid over-fitting.
They have not been widely used on large-scale data because of their prohibitive computational cost.
We show that the state-of-the-art of both approaches to scalability can be combined.
arXiv Detail & Related papers (2020-04-06T11:16:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.