Meerkat: Audio-Visual Large Language Model for Grounding in Space and Time
- URL: http://arxiv.org/abs/2407.01851v2
- Date: Wed, 3 Jul 2024 07:01:30 GMT
- Title: Meerkat: Audio-Visual Large Language Model for Grounding in Space and Time
- Authors: Sanjoy Chowdhury, Sayan Nag, Subhrajyoti Dasgupta, Jun Chen, Mohamed Elhoseiny, Ruohan Gao, Dinesh Manocha,
- Abstract summary: We present Meerkat, an audio-visual LLM equipped with a fine-grained understanding of image and audio.
Meerkat can tackle challenging tasks such as audio referred image grounding, image guided audio temporal localization, and audio-visual fact-checking.
We achieve state-of-the-art performance on all these downstream tasks with a relative improvement of up to 37.12%.
- Score: 73.7845280328535
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Leveraging Large Language Models' remarkable proficiency in text-based tasks, recent works on Multi-modal LLMs (MLLMs) extend them to other modalities like vision and audio. However, the progress in these directions has been mostly focused on tasks that only require a coarse-grained understanding of the audio-visual semantics. We present Meerkat, an audio-visual LLM equipped with a fine-grained understanding of image and audio both spatially and temporally. With a new modality alignment module based on optimal transport and a cross-attention module that enforces audio-visual consistency, Meerkat can tackle challenging tasks such as audio referred image grounding, image guided audio temporal localization, and audio-visual fact-checking. Moreover, we carefully curate a large dataset AVFIT that comprises 3M instruction tuning samples collected from open-source datasets, and introduce MeerkatBench that unifies five challenging audio-visual tasks. We achieve state-of-the-art performance on all these downstream tasks with a relative improvement of up to 37.12%.
Related papers
- Large Language Models Are Strong Audio-Visual Speech Recognition Learners [53.142635674428874]
Multimodal large language models (MLLMs) have recently become a focal point of research due to their formidable multimodal understanding capabilities.
We propose Llama-AVSR, a new MLLM with strong audio-visual speech recognition capabilities.
We evaluate our proposed approach on LRS3, the largest public AVSR benchmark, and we achieve new state-of-the-art results for the tasks of ASR and AVSR with a WER of 0.81% and 0.77%, respectively.
arXiv Detail & Related papers (2024-09-18T21:17:27Z) - MoWE-Audio: Multitask AudioLLMs with Mixture of Weak Encoders [36.528216873338614]
We propose to incorporate mixtures of weak' encoders into the AudioLLM framework.
MoWE supplements a base encoder with a pool of relatively light weight encoders, selectively activated based on the audio input to enhance feature extraction without significantly increasing model size.
Our empirical results demonstrate that MoWE effectively improves multi-task performance, broadening the applicability of AudioLLMs to more diverse audio tasks.
arXiv Detail & Related papers (2024-09-10T16:46:18Z) - Where Visual Speech Meets Language: VSP-LLM Framework for Efficient and Context-Aware Visual Speech Processing [56.71450690166821]
We propose a novel framework, namely Visual Speech Processing incorporated with LLMs (VSP-LLM)
VSP-LLM is designed to perform multi-tasks of visual speech recognition and translation.
We show that VSP-LLM trained on just 30 hours of labeled data can more effectively translate lip movements.
arXiv Detail & Related papers (2024-02-23T07:21:32Z) - Audio-Visual LLM for Video Understanding [25.963166809113005]
This paper presents Audio-Visual LLM, a Multimodal Large Language Model that takes both visual and auditory inputs for holistic video understanding.
We introduce a high-quality video instruction dataset, derived from GPT-4.
Experiments demonstrate that Audio-Visual LLM impressively achieves strong zero-shot results across a range of video understanding tasks.
arXiv Detail & Related papers (2023-12-11T02:50:46Z) - Fine-grained Audio-Visual Joint Representations for Multimodal Large
Language Models [25.660343393359565]
This paper proposes a fine-grained audio-visual joint representation (FAVOR) learning framework for multimodal large language models (LLM)
FAVOR simultaneously perceive speech and audio events in the audio input stream and images or videos in the visual input stream, at the frame level.
An interactive demo of FAVOR is available at https://github.com/BriansIDP/AudioVisualLLM.git, and the training code and model checkpoints will be released soon.
arXiv Detail & Related papers (2023-10-09T17:00:20Z) - Auto-ACD: A Large-scale Dataset for Audio-Language Representation Learning [50.28566759231076]
We propose an innovative, automatic approach to establish an audio dataset with high-quality captions.
Specifically, we construct a large-scale, high-quality, audio-language dataset, named as Auto-ACD, comprising over 1.5M audio-text pairs.
We employ LLM to paraphrase a congruent caption for each audio, guided by the extracted multi-modality clues.
arXiv Detail & Related papers (2023-09-20T17:59:32Z) - VALOR: Vision-Audio-Language Omni-Perception Pretraining Model and
Dataset [53.46019570679092]
We propose a Vision-Audio-Language Omni-peRception pretraining model (VALOR) for multi-modal understanding and generation.
VALOR jointly models relationships of vision, audio and language in an end-to-end manner.
It achieves new state-of-the-art performances on series of public cross-modality benchmarks.
arXiv Detail & Related papers (2023-04-17T15:08:15Z) - Accommodating Audio Modality in CLIP for Multimodal Processing [48.83906067348211]
We extend the Vision-Language model CLIP to accommodate the audio modality for Vision-Language-Audio multimodal processing.
Specifically, we apply inter-modal and intra-modal contrastive learning to explore the correlation between audio and other modalities.
Our proposed CLIP4VLA model is validated in different downstream tasks including video retrieval and video captioning.
arXiv Detail & Related papers (2023-03-12T06:57:01Z) - MAViL: Masked Audio-Video Learners [68.61844803682145]
We present Masked Audio-Video learners (MAViL) to train audio-visual representations.
Pre-training with MAViL enables the model to perform well in audio-visual classification and retrieval tasks.
For the first time, a self-supervised audio-visual model outperforms ones that use external supervision on benchmarks.
arXiv Detail & Related papers (2022-12-15T18:59:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.