SAVE: Segment Audio-Visual Easy way using Segment Anything Model
- URL: http://arxiv.org/abs/2407.02004v2
- Date: Wed, 3 Jul 2024 23:49:36 GMT
- Title: SAVE: Segment Audio-Visual Easy way using Segment Anything Model
- Authors: Khanh-Binh Nguyen, Chae Jung Park,
- Abstract summary: This study presents a lightweight approach, SAVE, which efficiently adapts the pre-trained segment anything model (SAM) to the AVS task.
Our proposed model achieves effective audio-visual fusion and interaction during the encoding stage.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The primary aim of Audio-Visual Segmentation (AVS) is to precisely identify and locate auditory elements within visual scenes by accurately predicting segmentation masks at the pixel level. Achieving this involves comprehensively considering data and model aspects to address this task effectively. This study presents a lightweight approach, SAVE, which efficiently adapts the pre-trained segment anything model (SAM) to the AVS task. By incorporating an image encoder adapter into the transformer blocks to better capture the distinct dataset information and proposing a residual audio encoder adapter to encode the audio features as a sparse prompt, our proposed model achieves effective audio-visual fusion and interaction during the encoding stage. Our proposed method accelerates the training and inference speed by reducing the input resolution from 1024 to 256 pixels while achieving higher performance compared with the previous SOTA. Extensive experimentation validates our approach, demonstrating that our proposed model outperforms other SOTA methods significantly. Moreover, leveraging the pre-trained model on synthetic data enhances performance on real AVSBench data, achieving 84.59 mIoU on the S4 (V1S) subset and 70.28 mIoU on the MS3 (V1M) set with only 256 pixels for input images. This increases up to 86.16 mIoU on the S4 (V1S) and 70.83 mIoU on the MS3 (V1M) with inputs of 1024 pixels.
Related papers
- VimTS: A Unified Video and Image Text Spotter for Enhancing the Cross-domain Generalization [115.64739269488965]
VimTS enhances the generalization ability of the model by achieving better synergy among different tasks.
We propose a synthetic video text dataset (VTD-368k) by leveraging the Content Deformation Fields (CoDeF) algorithm.
For video-level cross-domain adaption, our method even surpasses the previous end-to-end video spotting method in ICDAR2015 video and DSText v2.
arXiv Detail & Related papers (2024-04-30T15:49:03Z) - Unsupervised Audio-Visual Segmentation with Modality Alignment [42.613786372067814]
Audio-Visual aims to identify, at the pixel level, the object in a visual scene that produces a given sound.
Current AVS methods rely on costly fine-grained annotations of mask-audio pairs, making them impractical for scalability.
We propose an unsupervised learning method, named Modality Correspondence Alignment (MoCA), which seamlessly integrates off-the-shelf foundation models.
arXiv Detail & Related papers (2024-03-21T07:56:09Z) - Visually-Guided Sound Source Separation with Audio-Visual Predictive
Coding [57.08832099075793]
Visually-guided sound source separation consists of three parts: visual feature extraction, multimodal feature fusion, and sound signal processing.
This paper presents audio-visual predictive coding (AVPC) to tackle this task in parameter harmonizing and more effective manner.
In addition, we develop a valid self-supervised learning strategy for AVPC via co-predicting two audio-visual representations of the same sound source.
arXiv Detail & Related papers (2023-06-19T03:10:57Z) - Annotation-free Audio-Visual Segmentation [46.42570058385209]
We propose a novel pipeline for generating artificial data for the Audio-Visual task without extra manual annotations.
We leverage existing image segmentation and audio datasets and match the image-mask pairs with its corresponding audio samples using category labels.
We also introduce a lightweight model SAMA-AVS which adapts the pre-trained segment anything model(SAM) to the AVS task.
arXiv Detail & Related papers (2023-05-18T14:52:45Z) - AVFormer: Injecting Vision into Frozen Speech Models for Zero-Shot
AV-ASR [79.21857972093332]
We present AVFormer, a method for augmenting audio-only models with visual information, at the same time performing lightweight domain adaptation.
We show that these can be trained on a small amount of weakly labelled video data with minimum additional training time and parameters.
We also introduce a simple curriculum scheme during training which we show is crucial to enable the model to jointly process audio and visual information effectively.
arXiv Detail & Related papers (2023-03-29T07:24:28Z) - Contrastive Audio-Visual Masked Autoencoder [85.53776628515561]
Contrastive Audio-Visual Masked Auto-Encoder (CAV-MAE)
Our fully self-supervised pretrained CAV-MAE achieves a new SOTA accuracy of 65.9% on VGGSound.
arXiv Detail & Related papers (2022-10-02T07:29:57Z) - VATT: Transformers for Multimodal Self-Supervised Learning from Raw
Video, Audio and Text [60.97904439526213]
Video-Audio-Text Transformer (VATT) takes raw signals as inputs and extracts multimodal representations that are rich enough to benefit a variety of downstream tasks.
We train VATT end-to-end from scratch using multimodal contrastive losses and evaluate its performance by the downstream tasks of video action recognition, audio event classification, image classification, and text-to-video retrieval.
arXiv Detail & Related papers (2021-04-22T17:07:41Z) - Multiresolution and Multimodal Speech Recognition with Transformers [22.995102995029576]
This paper presents an audio visual automatic speech recognition (AV-ASR) system using a Transformer-based architecture.
We focus on the scene context provided by the visual information, to ground the ASR.
Our results are comparable to state-of-the-art Listen, Attend and Spell-based architectures.
arXiv Detail & Related papers (2020-04-29T09:32:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.