RETINA: a hardware-in-the-loop optical facility with reduced optical aberrations
- URL: http://arxiv.org/abs/2407.02172v1
- Date: Tue, 2 Jul 2024 11:26:37 GMT
- Title: RETINA: a hardware-in-the-loop optical facility with reduced optical aberrations
- Authors: Paolo Panicucci, Fabio Ornati, Francesco Topputo,
- Abstract summary: Vision-based navigation algorithms have established themselves as effective solutions to determine the spacecraft state in orbit with low-cost and versatile sensors.
A dedicated simulation framework must be developed to emulate the orbital environment in a laboratory setup.
This paper presents the design of a low-aberration optical facility called RETINA to perform this task.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The increasing interest in spacecraft autonomy and the complex tasks to be accomplished by the spacecraft raise the need for a trustworthy approach to perform Verification & Validation of Guidance, Navigation, and Control algorithms. In the context of autonomous operations, vision-based navigation algorithms have established themselves as effective solutions to determine the spacecraft state in orbit with low-cost and versatile sensors. Nevertheless, detailed testing must be performed on ground to understand the algorithm's robustness and performance on flight hardware. Given the impossibility of testing directly on orbit these algorithms, a dedicated simulation framework must be developed to emulate the orbital environment in a laboratory setup. This paper presents the design of a low-aberration optical facility called RETINA to perform this task. RETINA is designed to accommodate cameras with different characteristics (e.g., sensor size and focal length) while ensuring the correct stimulation of the camera detector. A preliminary design is performed to identify the range of possible components to be used in the facility according to the facility requirements. Then, a detailed optical design is performed in Zemax OpticStudio to optimize the number and characteristics of the lenses composing the facility's optical systems. The final design is compared against the preliminary design to show the superiority of the optical performance achieved with this approach. This work presents also a calibration procedure to estimate the misalignment and the centering errors in the facility. These estimated parameters are used in a dedicated compensation algorithm, enabling the stimulation of the camera at tens of arcseconds of precision. Finally, two different applications are presented to show the versatility of RETINA in accommodating different cameras and in simulating different mission scenarios.
Related papers
- Joint Spatial-Temporal Calibration for Camera and Global Pose Sensor [0.4143603294943439]
In robotics, motion capture systems have been widely used to measure the accuracy of localization algorithms.
These functionalities require having accurate and reliable spatial-temporal calibration parameters between the camera and the global pose sensor.
In this study, we provide two novel solutions to estimate these calibration parameters.
arXiv Detail & Related papers (2024-03-01T20:56:14Z) - Multi-Modal Neural Radiance Field for Monocular Dense SLAM with a
Light-Weight ToF Sensor [58.305341034419136]
We present the first dense SLAM system with a monocular camera and a light-weight ToF sensor.
We propose a multi-modal implicit scene representation that supports rendering both the signals from the RGB camera and light-weight ToF sensor.
Experiments demonstrate that our system well exploits the signals of light-weight ToF sensors and achieves competitive results.
arXiv Detail & Related papers (2023-08-28T07:56:13Z) - EasyHeC: Accurate and Automatic Hand-eye Calibration via Differentiable
Rendering and Space Exploration [49.90228618894857]
We introduce a new approach to hand-eye calibration called EasyHeC, which is markerless, white-box, and delivers superior accuracy and robustness.
We propose to use two key technologies: differentiable rendering-based camera pose optimization and consistency-based joint space exploration.
Our evaluation demonstrates superior performance in synthetic and real-world datasets.
arXiv Detail & Related papers (2023-05-02T03:49:54Z) - SST-Calib: Simultaneous Spatial-Temporal Parameter Calibration between
LIDAR and Camera [26.59231069298659]
A segmentation-based framework is proposed to jointly estimate the geometrical and temporal parameters in the calibration of a camera-LIDAR suite.
The proposed algorithm is tested on the KITTI dataset, and the result shows an accurate real-time calibration of both geometric and temporal parameters.
arXiv Detail & Related papers (2022-07-08T06:21:52Z) - Lasers to Events: Automatic Extrinsic Calibration of Lidars and Event
Cameras [67.84498757689776]
This paper presents the first direct calibration method between event cameras and lidars.
It removes dependencies on frame-based camera intermediaries and/or highly-accurate hand measurements.
arXiv Detail & Related papers (2022-07-03T11:05:45Z) - Deep Learning for Real Time Satellite Pose Estimation on Low Power Edge
TPU [58.720142291102135]
In this paper we propose a pose estimation software exploiting neural network architectures.
We show how low power machine learning accelerators could enable Artificial Intelligence exploitation in space.
arXiv Detail & Related papers (2022-04-07T08:53:18Z) - Automatic Extrinsic Calibration Method for LiDAR and Camera Sensor
Setups [68.8204255655161]
We present a method to calibrate the parameters of any pair of sensors involving LiDARs, monocular or stereo cameras.
The proposed approach can handle devices with very different resolutions and poses, as usually found in vehicle setups.
arXiv Detail & Related papers (2021-01-12T12:02:26Z) - PlenoptiCam v1.0: A light-field imaging framework [8.467466998915018]
Light-field cameras play a vital role for rich 3-D information retrieval in narrow range depth sensing applications.
Key obstacle in composing light-fields from exposures taken by a plenoptic camera is to calibrate computationally, align and rearrange four-dimensional image data.
Several attempts have been proposed to enhance the overall image quality by tailoring pipelines dedicated to particular plenoptic cameras.
arXiv Detail & Related papers (2020-10-14T09:23:18Z) - Robust On-Manifold Optimization for Uncooperative Space Relative
Navigation with a Single Camera [4.129225533930966]
An innovative model-based approach is demonstrated to estimate the six-dimensional pose of a target object relative to the chaser spacecraft using solely a monocular setup.
It is validated on realistic synthetic and laboratory datasets of a rendezvous trajectory with the complex spacecraft Envisat.
arXiv Detail & Related papers (2020-05-14T16:23:04Z) - Multi-View Photometric Stereo: A Robust Solution and Benchmark Dataset
for Spatially Varying Isotropic Materials [65.95928593628128]
We present a method to capture both 3D shape and spatially varying reflectance with a multi-view photometric stereo technique.
Our algorithm is suitable for perspective cameras and nearby point light sources.
arXiv Detail & Related papers (2020-01-18T12:26:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.