How to Learn in a Noisy World? Self-Correcting the Real-World Data Noise in Machine Translation
- URL: http://arxiv.org/abs/2407.02208v2
- Date: Fri, 07 Feb 2025 15:03:38 GMT
- Title: How to Learn in a Noisy World? Self-Correcting the Real-World Data Noise in Machine Translation
- Authors: Yan Meng, Di Wu, Christof Monz,
- Abstract summary: In this paper, we introduce a process for simulating misalignment controlled by semantic similarity.
We quantitatively analyze its impact on machine translation and demonstrate the limited effectiveness of widely used pre-filters for noise detection.
We propose self-correction, an approach that gradually increases trust in the model's self-knowledge to correct the training supervision.
- Score: 10.739338438716965
- License:
- Abstract: The massive amounts of web-mined parallel data contain large amounts of noise. Semantic misalignment, as the primary source of the noise, poses a challenge for training machine translation systems. In this paper, we first introduce a process for simulating misalignment controlled by semantic similarity, which closely resembles misaligned sentences in real-world web-crawled corpora. Under our simulated misalignment noise settings, we quantitatively analyze its impact on machine translation and demonstrate the limited effectiveness of widely used pre-filters for noise detection. This underscores the necessity of more fine-grained ways to handle hard-to-detect misalignment noise. With an observation of the increasing reliability of the model's self-knowledge for distinguishing misaligned and clean data at the token level, we propose self-correction, an approach that gradually increases trust in the model's self-knowledge to correct the training supervision. Comprehensive experiments show that our method significantly improves translation performance both in the presence of simulated misalignment noise and when applied to real-world, noisy web-mined datasets, across a range of translation tasks.
Related papers
- Effective Noise-aware Data Simulation for Domain-adaptive Speech Enhancement Leveraging Dynamic Stochastic Perturbation [25.410770364140856]
Cross-domain speech enhancement (SE) is often faced with severe challenges due to the scarcity of noise and background information in an unseen target domain.
This study puts forward a novel data simulation method to address this issue, leveraging noise-extractive techniques and generative adversarial networks (GANs)
We introduce the notion of dynamic perturbation, which can inject controlled perturbations into the noise embeddings during inference.
arXiv Detail & Related papers (2024-09-03T02:29:01Z) - Learning with Noisy Foundation Models [95.50968225050012]
This paper is the first work to comprehensively understand and analyze the nature of noise in pre-training datasets.
We propose a tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise and improve generalization.
arXiv Detail & Related papers (2024-03-11T16:22:41Z) - Noisy Pair Corrector for Dense Retrieval [59.312376423104055]
We propose a novel approach called Noisy Pair Corrector (NPC)
NPC consists of a detection module and a correction module.
We conduct experiments on text-retrieval benchmarks Natural Question and TriviaQA, code-search benchmarks StaQC and SO-DS.
arXiv Detail & Related papers (2023-11-07T08:27:14Z) - Understanding and Mitigating the Label Noise in Pre-training on
Downstream Tasks [91.15120211190519]
This paper aims to understand the nature of noise in pre-training datasets and to mitigate its impact on downstream tasks.
We propose a light-weight black-box tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise.
arXiv Detail & Related papers (2023-09-29T06:18:15Z) - Unsupervised Noise adaptation using Data Simulation [21.866522173387715]
We propose a generative adversarial network based method to efficiently learn a converse clean-to-noisy transformation.
Experimental results show that our method effectively mitigates the domain mismatch between training and test sets.
arXiv Detail & Related papers (2023-02-23T12:57:20Z) - NLIP: Noise-robust Language-Image Pre-training [95.13287735264937]
We propose a principled Noise-robust Language-Image Pre-training framework (NLIP) to stabilize pre-training via two schemes: noise-harmonization and noise-completion.
Our NLIP can alleviate the common noise effects during image-text pre-training in a more efficient way.
arXiv Detail & Related papers (2022-12-14T08:19:30Z) - Learning from Noisy Labels with Coarse-to-Fine Sample Credibility
Modeling [22.62790706276081]
Training deep neural network (DNN) with noisy labels is practically challenging.
Previous efforts tend to handle part or full data in a unified denoising flow.
We propose a coarse-to-fine robust learning method called CREMA to handle noisy data in a divide-and-conquer manner.
arXiv Detail & Related papers (2022-08-23T02:06:38Z) - Bridging the Gap Between Clean Data Training and Real-World Inference
for Spoken Language Understanding [76.89426311082927]
Existing models are trained on clean data, which causes a textitgap between clean data training and real-world inference.
We propose a method from the perspective of domain adaptation, by which both high- and low-quality samples are embedding into similar vector space.
Experiments on the widely-used dataset, Snips, and large scale in-house dataset (10 million training examples) demonstrate that this method not only outperforms the baseline models on real-world (noisy) corpus but also enhances the robustness, that is, it produces high-quality results under a noisy environment.
arXiv Detail & Related papers (2021-04-13T17:54:33Z) - Robust Neural Machine Translation: Modeling Orthographic and
Interpunctual Variation [3.3194866396158]
We propose a simple generative noise model to generate adversarial examples of ten different types.
We show that, when tested on noisy data, systems trained using adversarial examples perform almost as well as when translating clean data.
arXiv Detail & Related papers (2020-09-11T14:12:54Z) - Robust Unsupervised Neural Machine Translation with Adversarial
Denoising Training [66.39561682517741]
Unsupervised neural machine translation (UNMT) has attracted great interest in the machine translation community.
The main advantage of the UNMT lies in its easy collection of required large training text sentences.
In this paper, we first time explicitly take the noisy data into consideration to improve the robustness of the UNMT based systems.
arXiv Detail & Related papers (2020-02-28T05:17:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.