Hybrid Quantum-Classical Photonic Neural Networks
- URL: http://arxiv.org/abs/2407.02366v2
- Date: Sun, 14 Jul 2024 22:15:26 GMT
- Title: Hybrid Quantum-Classical Photonic Neural Networks
- Authors: Tristan Austin, Simon Bilodeau, Andrew Hayman, Nir Rotenberg, Bhavin Shastri,
- Abstract summary: We show a combination of classical network layers with trainable continuous variable quantum circuits.
On a classification task, hybrid networks achieve the same performance when benchmarked against fully classical networks that are twice the size.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neuromorphic (brain-inspired) photonics leverages photonic chips to accelerate artificial intelligence, offering high-speed and energy efficient solutions in RF communication, tensor processing, and data classification. However, the limited physical size of integrated photonic hardware constrains network complexity and computational capacity. In light of recent advances in photonic quantum technology, it is natural to utilize quantum exponential speedup to scale photonic neural network capabilities. Here we show a combination of classical network layers with trainable continuous variable quantum circuits yields hybrid networks with improved trainability and accuracy. On a classification task, hybrid networks achieve the same performance when benchmarked against fully classical networks that are twice the size. When the bit precision of the optimized networks is reduced through added noise, the hybrid networks still achieve greater accuracy when evaluated at state of the art bit precision. These hybrid quantum classical networks demonstrate a unique route to improve computational capacity of integrated photonic neural networks without increasing the physical network size.
Related papers
- An ensemble framework approach of hybrid Quantum convolutional neural networks for classification of breast cancer images [2.1659912179830023]
Quantum neural networks are deemed suitable to replace classical neural networks in their ability to learn and scale up network models.
Medical image classification pertains well to applications in deep learning, particularly, convolutional neural networks.
arXiv Detail & Related papers (2024-09-24T10:43:27Z) - CTRQNets & LQNets: Continuous Time Recurrent and Liquid Quantum Neural Networks [76.53016529061821]
Liquid Quantum Neural Network (LQNet) and Continuous Time Recurrent Quantum Neural Network (CTRQNet) developed.
LQNet and CTRQNet achieve accuracy increases as high as 40% on CIFAR 10 through binary classification.
arXiv Detail & Related papers (2024-08-28T00:56:03Z) - Towards Efficient Quantum Hybrid Diffusion Models [68.43405413443175]
We propose a new methodology to design quantum hybrid diffusion models.
We propose two possible hybridization schemes combining quantum computing's superior generalization with classical networks' modularity.
arXiv Detail & Related papers (2024-02-25T16:57:51Z) - Spatially Varying Nanophotonic Neural Networks [39.1303097259564]
Photonic processors that execute operations using photons instead of electrons promise to enable optical neural networks with ultra-low latency and power consumption.
Existing optical neural networks, limited by the underlying network designs, have achieved image recognition accuracy far below that of state-of-the-art electronic neural networks.
arXiv Detail & Related papers (2023-08-07T08:48:46Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
We use the open-source Simulator of QUantum Network Communication (SeQUeNCe), developed by our team, to simulate entanglement generation between two atomic frequency comb (AFC) absorptive quantum memories.
We realize the representation of photonic quantum states within truncated Fock spaces in SeQUeNCe.
We observe varying fidelity with SPDC source mean photon number, and varying entanglement generation rate with both mean photon number and memory mode number.
arXiv Detail & Related papers (2022-12-17T05:51:17Z) - QDCNN: Quantum Dilated Convolutional Neural Network [1.52292571922932]
We propose a novel hybrid quantum-classical algorithm called quantum dilated convolutional neural networks (QDCNNs)
Our method extends the concept of dilated convolution, which has been widely applied in modern deep learning algorithms, to the context of hybrid neural networks.
The proposed QDCNNs are able to capture larger context during the quantum convolution process while reducing the computational cost.
arXiv Detail & Related papers (2021-10-29T10:24:34Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
We show that conditions amenable to classical trainability via gradient descent coincide with those necessary for efficiently solving quantum linear systems.
We numerically demonstrate that the MNIST image dataset satisfies such conditions.
We provide empirical evidence for $O(log n)$ training of a convolutional neural network with pooling.
arXiv Detail & Related papers (2021-07-19T23:41:03Z) - A Quantum Convolutional Neural Network for Image Classification [7.745213180689952]
We propose a novel neural network model named Quantum Convolutional Neural Network (QCNN)
QCNN is based on implementable quantum circuits and has a similar structure as classical convolutional neural networks.
Numerical simulation results on the MNIST dataset demonstrate the effectiveness of our model.
arXiv Detail & Related papers (2021-07-08T06:47:34Z) - Entanglement Rate Optimization in Heterogeneous Quantum Communication
Networks [79.8886946157912]
Quantum communication networks are emerging as a promising technology that could constitute a key building block in future communication networks in the 6G era and beyond.
Recent advances led to the deployment of small- and large-scale quantum communication networks with real quantum hardware.
In quantum networks, entanglement is a key resource that allows for data transmission between different nodes.
arXiv Detail & Related papers (2021-05-30T11:34:23Z) - Quantum Deformed Neural Networks [83.71196337378022]
We develop a new quantum neural network layer designed to run efficiently on a quantum computer.
It can be simulated on a classical computer when restricted in the way it entangles input states.
arXiv Detail & Related papers (2020-10-21T09:46:12Z) - Quantum implementation of an artificial feed-forward neural network [0.0]
We show an experimental realization of an artificial feed-forward neural network implemented on a state-of-art superconducting quantum processor.
The network is made of quantum artificial neurons, which individually display a potential advantage in storage capacity.
We demonstrate that this network can be equivalently operated either via classical control or in a completely coherent fashion.
arXiv Detail & Related papers (2019-12-28T16:49:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.