Video Watermarking: Safeguarding Your Video from (Unauthorized) Annotations by Video-based LLMs
- URL: http://arxiv.org/abs/2407.02411v2
- Date: Wed, 3 Jul 2024 03:48:18 GMT
- Title: Video Watermarking: Safeguarding Your Video from (Unauthorized) Annotations by Video-based LLMs
- Authors: Jinmin Li, Kuofeng Gao, Yang Bai, Jingyun Zhang, Shu-Tao Xia,
- Abstract summary: Video Watermarking is a technique to protect videos from unauthorized annotations by video-based Large Language Models.
Our method preserves the viewing experience while preventing misuse by video-based LLMs.
- Score: 43.83499677307886
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advent of video-based Large Language Models (LLMs) has significantly enhanced video understanding. However, it has also raised some safety concerns regarding data protection, as videos can be more easily annotated, even without authorization. This paper introduces Video Watermarking, a novel technique to protect videos from unauthorized annotations by such video-based LLMs, especially concerning the video content and description, in response to specific queries. By imperceptibly embedding watermarks into key video frames with multi-modal flow-based losses, our method preserves the viewing experience while preventing misuse by video-based LLMs. Extensive experiments show that Video Watermarking significantly reduces the comprehensibility of videos with various video-based LLMs, demonstrating both stealth and robustness. In essence, our method provides a solution for securing video content, ensuring its integrity and confidentiality in the face of evolving video-based LLMs technologies.
Related papers
- Protecting Your Video Content: Disrupting Automated Video-based LLM Annotations [48.94868867419852]
Video-based large language models (video-based LLMs) have achieved impressive performance across various video comprehension tasks.
This rapid advancement raises significant privacy and security concerns, particularly regarding the unauthorized use of personal video data.
We propose two series of protective video watermarks with imperceptible adversarial perturbations, named Ramblings and Mutes.
arXiv Detail & Related papers (2025-03-26T08:11:58Z) - VideoRAG: Retrieval-Augmented Generation over Video Corpus [57.68536380621672]
VideoRAG is a framework that dynamically retrieves videos based on their relevance with queries.
VideoRAG is powered by recent Large Video Language Models (LVLMs)
We experimentally validate the effectiveness of VideoRAG, showcasing that it is superior to relevant baselines.
arXiv Detail & Related papers (2025-01-10T11:17:15Z) - Video-RAG: Visually-aligned Retrieval-Augmented Long Video Comprehension [83.00346826110041]
Video-RAG is a training-free and cost-effective pipeline that employs visually-aligned auxiliary texts to help facilitate cross-modality alignment.
Our model demonstrates superior performance over proprietary models like Gemini-1.5-Pro and GPT-4o when utilized with a 72B model.
arXiv Detail & Related papers (2024-11-20T07:44:34Z) - Interpolating Video-LLMs: Toward Longer-sequence LMMs in a Training-free Manner [53.671484175063995]
Video-LLMs are pre-trained to process short videos, limiting their broader application for understanding longer video content.
We introduce an alternative video token rearrangement technique that circumvents limitations imposed by the fixed video encoder and alignment projector.
arXiv Detail & Related papers (2024-09-19T17:59:55Z) - MMBench-Video: A Long-Form Multi-Shot Benchmark for Holistic Video Understanding [67.56182262082729]
We introduce MMBench-Video, a quantitative benchmark to rigorously evaluate large vision-language models (LVLMs) in video understanding.
MMBench-Video incorporates lengthy videos from YouTube and employs free-form questions, mirroring practical use cases.
The benchmark is meticulously crafted to probe the models' temporal reasoning skills, with all questions human-annotated according to a carefully constructed ability taxonomy.
arXiv Detail & Related papers (2024-06-20T17:26:01Z) - Understanding Long Videos with Multimodal Language Models [44.78900245769057]
Large Language Models (LLMs) have allowed recent approaches to achieve excellent performance on long-video understanding benchmarks.
We investigate how extensive world knowledge and strong reasoning skills of underlying LLMs influence this strong performance.
Our resulting Multimodal Video Understanding framework demonstrates state-of-the-art performance across multiple video understanding benchmarks.
arXiv Detail & Related papers (2024-03-25T17:59:09Z) - FMM-Attack: A Flow-based Multi-modal Adversarial Attack on Video-based LLMs [57.59518049930211]
We propose the first adversarial attack tailored for video-based large language models (LLMs)
Our attack can effectively induce video-based LLMs to generate incorrect answers when videos are added with imperceptible adversarial perturbations.
Our FMM-Attack can also induce garbling in the model output, prompting video-based LLMs to hallucinate.
arXiv Detail & Related papers (2024-03-20T11:05:07Z) - Video Understanding with Large Language Models: A Survey [97.29126722004949]
Given the remarkable capabilities of large language models (LLMs) in language and multimodal tasks, this survey provides a detailed overview of recent advancements in video understanding.
The emergent capabilities Vid-LLMs are surprisingly advanced, particularly their ability for open-ended multi-granularity reasoning.
This survey presents a comprehensive study of the tasks, datasets, benchmarks, and evaluation methodologies for Vid-LLMs.
arXiv Detail & Related papers (2023-12-29T01:56:17Z) - VTimeLLM: Empower LLM to Grasp Video Moments [43.51980030572101]
Large language models (LLMs) have shown remarkable text understanding capabilities.
Video LLMs can only provide a coarse description of the entire video.
We propose VTimeLLM, a novel Video LLM for fine-grained video moment understanding.
arXiv Detail & Related papers (2023-11-30T10:49:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.