Error mitigation with stabilized noise in superconducting quantum processors
- URL: http://arxiv.org/abs/2407.02467v2
- Date: Fri, 5 Jul 2024 04:53:53 GMT
- Title: Error mitigation with stabilized noise in superconducting quantum processors
- Authors: Youngseok Kim, Luke C. G. Govia, Andrew Dane, Ewout van den Berg, David M. Zajac, Bradley Mitchell, Yinyu Liu, Karthik Balakrishnan, George Keefe, Adam Stabile, Emily Pritchett, Jiri Stehlik, Abhinav Kandala,
- Abstract summary: We experimentally demonstrate that tuning of the qubit-TLS interactions helps reduce noise instabilities and enables more reliable error-mitigation performance.
We anticipate that the capabilities introduced here will be crucial for the exploration of quantum applications on solid-state processors at non-trivial scales.
- Score: 2.2752198833969315
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pre-fault tolerant quantum computers have already demonstrated the ability to estimate observable values accurately, at a scale beyond brute-force classical computation. This has been enabled by error mitigation techniques that often rely on a representative model on the device noise. However, learning and maintaining these models is complicated by fluctuations in the noise over unpredictable time scales, for instance, arising from resonant interactions between superconducting qubits and defect two-level systems (TLS). Such interactions affect the stability and uniformity of device performance as a whole, but also affect the noise model accuracy, leading to incorrect observable estimation. Here, we experimentally demonstrate that tuning of the qubit-TLS interactions helps reduce noise instabilities and consequently enables more reliable error-mitigation performance. These experiments provide a controlled platform for studying the performance of error mitigation in the presence of quasi-static noise. We anticipate that the capabilities introduced here will be crucial for the exploration of quantum applications on solid-state processors at non-trivial scales.
Related papers
- Limitations to Dynamical Error Suppression and Gate-Error Virtualization from Temporally Correlated Nonclassical Noise [0.0]
We study a minimal exactly solvable single-qubit model under Gaussian quantum dephasing noise.
For digital periodic control, we prove that, under mild conditions on the low-frequency behavior of the nonclassical noise spectrum, the gate fidelity saturates at a value that is strictly smaller than the one attainable in the absence of control history.
We find that only if decoupling can keep the qubit highly pure over a timescale larger than the correlation time of the noise, the bath approximately converges to its original statistics and a stable-in-time control performance is recovered.
arXiv Detail & Related papers (2024-07-05T18:00:00Z) - Flexible Error Mitigation of Quantum Processes with Data Augmentation
Empowered Neural Model [9.857921247636451]
We propose a data augmentation empowered neural model for error mitigation (DAEM)
Our model does not require any prior knowledge about the specific noise type and measurement settings.
It can estimate noise-free statistics solely from the noisy measurement results of the target quantum process.
arXiv Detail & Related papers (2023-11-03T05:52:14Z) - Modelling non-Markovian noise in driven superconducting qubits [2.7648976108201815]
Non-Markovian noise can be a significant source of errors in superconducting qubits.
We develop gate sequences that allow us to characterise and model the effects of non-Markovian noise on both idle and driven qubits.
arXiv Detail & Related papers (2023-06-22T16:30:29Z) - Improve Noise Tolerance of Robust Loss via Noise-Awareness [60.34670515595074]
We propose a meta-learning method which is capable of adaptively learning a hyper parameter prediction function, called Noise-Aware-Robust-Loss-Adjuster (NARL-Adjuster for brevity)
Four SOTA robust loss functions are attempted to be integrated with our algorithm, and comprehensive experiments substantiate the general availability and effectiveness of the proposed method in both its noise tolerance and performance.
arXiv Detail & Related papers (2023-01-18T04:54:58Z) - Exponentially tighter bounds on limitations of quantum error mitigation [2.936007114555107]
Quantum error mitigation has been proposed as a means to combat unwanted and unavoidable errors in near-term quantum computing.
In this work, we identify strong limitations to the degree to which quantum noise can be effectively undone' for larger system sizes.
arXiv Detail & Related papers (2022-10-20T18:12:42Z) - Stabilizing and improving qubit coherence by engineering noise spectrum
of two-level systems [52.77024349608834]
Superconducting circuits are a leading platform for quantum computing.
Charge fluctuators inside amorphous oxide layers contribute to both low-frequency $1/f$ charge noise and high-frequency dielectric loss.
We propose to mitigate those harmful effects by engineering the relevant TLS noise spectral densities.
arXiv Detail & Related papers (2022-06-21T18:37:38Z) - Probabilistic error cancellation with sparse Pauli-Lindblad models on
noisy quantum processors [0.7299729677753102]
We present a protocol for learning and inverting a sparse noise model that is able to capture correlated noise and scales to large quantum devices.
These advances allow us to demonstrate PEC on a superconducting quantum processor with crosstalk errors.
arXiv Detail & Related papers (2022-01-24T18:40:43Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
We introduce a conditional witnessing technique to certify genuine multipartite entanglement (GME)
We prove that the detection of entanglement in a linear number of bipartitions by a number of measurements scales linearly, suffices to certify GME.
We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version.
arXiv Detail & Related papers (2020-10-06T18:00:07Z) - Process tomography of Robust Dynamical Decoupling in Superconducting
Qubits [91.3755431537592]
The Rigetti quantum computing platform was used to test different dynamical decoupling sequences.
The performance of the sequences was characterized by Quantum Process Tomography and analyzed using the quantum channels formalism.
arXiv Detail & Related papers (2020-06-18T14:48:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.