RankRAG: Unifying Context Ranking with Retrieval-Augmented Generation in LLMs
- URL: http://arxiv.org/abs/2407.02485v1
- Date: Tue, 2 Jul 2024 17:59:17 GMT
- Title: RankRAG: Unifying Context Ranking with Retrieval-Augmented Generation in LLMs
- Authors: Yue Yu, Wei Ping, Zihan Liu, Boxin Wang, Jiaxuan You, Chao Zhang, Mohammad Shoeybi, Bryan Catanzaro,
- Abstract summary: Large language models (LLMs) typically utilize the top-k contexts from a retriever in retrieval-augmented generation (RAG)
We propose a novel instruction fine-tuning framework RankRAG, which instruction-tunes a single LLM for the dual purpose of context ranking and answer generation in RAG.
For generation, we compare our model with many strong baselines, including GPT-4-0613, GPT-4-turbo-2024-0409, and ChatQA-1.5, an open-sourced model with the state-of-the-art performance on RAG benchmarks.
- Score: 60.38044044203333
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) typically utilize the top-k contexts from a retriever in retrieval-augmented generation (RAG). In this work, we propose a novel instruction fine-tuning framework RankRAG, which instruction-tunes a single LLM for the dual purpose of context ranking and answer generation in RAG. In particular, the instruction-tuned LLMs work surprisingly well by adding a small fraction of ranking data into the training blend, and outperform existing expert ranking models, including the same LLM exclusively fine-tuned on a large amount of ranking data. For generation, we compare our model with many strong baselines, including GPT-4-0613, GPT-4-turbo-2024-0409, and ChatQA-1.5, an open-sourced model with the state-of-the-art performance on RAG benchmarks. Specifically, our Llama3-RankRAG significantly outperforms Llama3-ChatQA-1.5 and GPT-4 models on nine knowledge-intensive benchmarks. In addition, it also performs comparably to GPT-4 on five RAG benchmarks in the biomedical domain without instruction fine-tuning on biomedical data, demonstrating its superb capability for generalization to new domains.
Related papers
- Toward General Instruction-Following Alignment for Retrieval-Augmented Generation [63.611024451010316]
Following natural instructions is crucial for the effective application of Retrieval-Augmented Generation (RAG) systems.
We propose VIF-RAG, the first automated, scalable, and verifiable synthetic pipeline for instruction-following alignment in RAG systems.
arXiv Detail & Related papers (2024-10-12T16:30:51Z) - SFR-RAG: Towards Contextually Faithful LLMs [57.666165819196486]
Retrieval Augmented Generation (RAG) is a paradigm that integrates external contextual information with large language models (LLMs) to enhance factual accuracy and relevance.
We introduce SFR-RAG, a small LLM that is instruction-textual with an emphasis on context-grounded generation and hallucination.
We also present ConBench, a new evaluation framework compiling multiple popular and diverse RAG benchmarks.
arXiv Detail & Related papers (2024-09-16T01:08:18Z) - Performance of the Pre-Trained Large Language Model GPT-4 on Automated
Short Answer Grading [0.0]
We studied the performance of GPT-4 on the standard benchmark 2-way and 3-way datasets SciEntsBank and Beetle.
We found that the performance of the pre-trained general-purpose GPT-4 LLM is comparable to hand-engineered models, but worse than pre-trained LLMs that had specialized training.
arXiv Detail & Related papers (2023-09-17T18:04:34Z) - Large Language Models are Effective Text Rankers with Pairwise Ranking Prompting [65.00288634420812]
Pairwise Ranking Prompting (PRP) is a technique to significantly reduce the burden on Large Language Models (LLMs)
Our results are the first in the literature to achieve state-of-the-art ranking performance on standard benchmarks using moderate-sized open-sourced LLMs.
arXiv Detail & Related papers (2023-06-30T11:32:25Z) - Is ChatGPT Good at Search? Investigating Large Language Models as
Re-Ranking Agents [56.104476412839944]
Large Language Models (LLMs) have demonstrated remarkable zero-shot generalization across various language-related tasks.
This paper investigates generative LLMs for relevance ranking in Information Retrieval (IR)
To address concerns about data contamination of LLMs, we collect a new test set called NovelEval.
To improve efficiency in real-world applications, we delve into the potential for distilling the ranking capabilities of ChatGPT into small specialized models.
arXiv Detail & Related papers (2023-04-19T10:16:03Z) - Instruction Tuning with GPT-4 [107.55078894215798]
We present the first attempt to use GPT-4 to generate instruction-following data for finetuning large language models.
Our early experiments on instruction-tuned LLaMA models show that the 52K English and Chinese instruction-following data generated by GPT-4 leads to superior zero-shot performance on new tasks.
arXiv Detail & Related papers (2023-04-06T17:58:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.